Math, asked by YourHelperAdi, 5 days ago


 \bold{if \:   {cos}^{2 }  \theta + 2 {sin}^{2} \theta + 3 {cos}^{2}  \theta +  {4sin}^{2} \theta } \\  \bold{... \: upto \: 200 \: terms = 10025 \: where}  \\  \bold{ \theta \: is \: acute. \:   then\: find \: (sin \theta - cos \theta) }
■ moderator
■ brainly star
■ other best user
answer this question. Don't spam ​

Answers

Answered by mathdude500
11

\large\underline{\sf{Solution-}}

Given that

 \rm \:  {cos}^{2}\theta+2{sin}^{2}\theta +  {3cos}^{2}\theta +  {4sin}^{2}\theta +  -  - 200 \: terms = 10025

On rearranging the terms, we get

\rm \:({cos}^{2}\theta +  {3cos}^{2}\theta +  -  -  - 100 \: terms) + ( {2sin}^{2}\theta +  {4sin}^{2}\theta +  -  -  - 100 \: terms) = 10025

can be further rewritten as

 \rm \:  {cos}^{2}\theta(1 + 3 + 5 +-  - 100 \: terms) +  {sin}^{2}\theta(2 + 4 + 6 +  -  - 100 \: terms) = 10025

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • Sₙ is the sum of n terms of AP.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

So, using this formula we get

 \rm \:  {cos}^{2}\theta \times \dfrac{100}{2} \bigg(2(1) + (100 - 1)2 \bigg) + {sin}^{2}\theta \times \dfrac{100}{2} \bigg(2(2) + (100 - 1)2 \bigg) = 10025

 \rm \:  50{cos}^{2}\theta \bigg(2 +  198 \bigg) + {50sin}^{2}\theta\bigg(4 + 198 \bigg) = 10025

 \rm \:  50{cos}^{2}\theta \bigg(200 \bigg) + {50sin}^{2}\theta\bigg(200 + 2 \bigg) = 10025

 \rm \:  10000{cos}^{2}\theta  + 10000{sin}^{2}\theta + 100 {sin}^{2}\theta  = 10025

 \rm \:  10000({cos}^{2}\theta  + {sin}^{2}\theta) + 100 {sin}^{2}\theta  = 10025

 \rm \:  10000(1) + 100 {sin}^{2}\theta  = 10025

 \rm \:  10000 + 100 {sin}^{2}\theta  = 10025

 \rm \: 100 {sin}^{2}\theta  = 10025 - 10000

 \rm \: 100 {sin}^{2}\theta  = 25

 \rm \:{sin}^{2}\theta  = \dfrac{25}{100}

 \rm \:{sin}^{2}\theta  = \dfrac{1}{4}

\rm \implies\:sin\theta = \dfrac{1}{2}

\bf\implies \:\theta = 30 \degree \:

Now, Consider

\red{\rm :\longmapsto\:sin\theta - cos\theta \: }

\rm \:  =  \: sin30 \degree - cos30 \degree

\rm \:  =  \: \dfrac{1}{2}  - \dfrac{ \sqrt{3} }{2}

\rm \:  =  \: \dfrac{1 -  \sqrt{3} }{2}

Hence,

\red{\rm :\longmapsto\:\boxed{ \tt{ \: sin\theta - cos\theta \: } =  \frac{1 -  \sqrt{3} }{2} \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Answered by aakashmutum
0

Given that

On rearranging the terms, we get

can be further rewritten as

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n  terms of an arithmetic sequence is,

Wʜᴇʀᴇ,

Sₙ is the sum of n terms of AP.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

So, using this formula we get

Now, Consider

Hence,

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions