Math, asked by Anonymous, 3 months ago


 \bold{if \: f(x) =  \cos( log(x) ) \: then \: f( \frac{1}{x})f( \frac{1}{y} ) -  \frac{1}{2} [f(xy) + f( \frac{x}{y}) ]}
Please answer this question.. from the chapter functions.. no irrelevant answers please..​

Answers

Answered by QueenFlorA
2

Hello mate..

Solution:

GIVEN:

\bold{if \: f(x) = \cos( log(x) ) \: then \: f( \frac{1}{x})f( \frac{1}{y} ) - \frac{1}{2} [f(xy) + f( \frac{x}{y}) ]}

TO FIND:

\bold{ f( \frac{1}{x})f( \frac{1}{y} ) - \frac{1}{2} [f(xy) + f( \frac{x}{y}) ]}

SOLUTION:

 \bold{ \implies cos(log \frac{1}{x}) \times cos(log \frac{1}{y}) -  \frac{1}{2}[cos(log \: xy) + cos(log \frac{x}{y} ) ] } \\  \bold{ \implies cos[log \: 1 - log \: x] \times cos[log \: 1 - log \: y] -  \frac{1}{2}[cos(log \: x + log \: y) + cos(log \: x - log \: y)] } \\  \bold{ \implies cos( - log \: x) \times cos(log \: y) -  \frac{1}{2}[2cos(log \: x) \times (log \: y) } \\  \bold{ \implies cos (log \: x )\times cos ( log \: y) - cos(log \: x) \times cos(log \: y)} \\  \bold{ = 0}

 \huge\underline\mathcal \pink{ formulas \: used :  }

 \implies\bold \green{   log_{a}(1)  = 0} \\ \implies\bold \green{cos(a + b) +  \cos(a - b) = 2 \cos(a)  \cos(b)  } \\ \implies\bold \green{log \: xy = log \: x + log \: y} \\ \implies\bold \green{log \frac{x}{y} = log \: x - log \: y } \\ \implies\bold \green{ log_{ {a}^{m} }(b) = m  log_{b}(a) } \\ \implies\bold \green{ \cos( -  \alpha ) =  \cos( \alpha )  }

Note:

Kindly scroll right side to view the full answer!

Thanks!

HOPE THIS HELPS YOU..

Similar questions