Math, asked by brainlyofficial11, 6 months ago


 \bold{if \:  \frac{1}{ 1 + \sec \theta} +  \frac{1}{ 1 -  \sin \theta}  = k \sec^{2}  \theta } \\  \\  \bold{then \: find \: the \: value \: of \: k \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

⚠︎ ᴅᴏɴ'ᴛ sᴘᴀᴍ​

Answers

Answered by Anonymous
22

Correct Question:-

If \sf{\dfrac{1}{1+sin\theta} + \dfrac{1}{1-sin\theta} = k sec^2\theta}, then find the value of k.

Given:-

  • \sf{\dfrac{1}{1+sin\theta} + \dfrac{1}{1-sin\theta} = k sec^2\theta}

To Find:-

The value of k.

Solution:-

For this question we need to simplify LHS first.

So, firstly taking LHS,

\sf{\dfrac{1}{1+sin\theta} + \dfrac{1}{1-sin\theta}}

Taking LCM,

\sf{\dfrac{(1-sin\theta) + (1+sin\theta)}{(1+sin\theta)(1-sin\theta)}}

= \sf{\dfrac{1-sin\theta + 1 + \sin\theta}{(1)^2 - (sin\theta)^2}}

\sf{\because (a+b)(a-b) = a^2 - b^2}

= \sf{\dfrac{1 - \cancel{sin\theta} + 1 + \cancel{sin\theta}}{1-sin^2\theta}}

= \sf{\dfrac{2}{cos^2\theta}}

= \sf{2\times \dfrac{1}{sec^2\theta}}

= \sf{2\times sec^2\theta}

= \sf{2sec^2\theta}

Since, it is given in the question that,

\sf{\dfrac{1}{1+sin\theta} + \dfrac{1}{1-sin\theta} = ksec^2\theta}

Therefore,

\sf{2sec^2\theta = ksec^2\theta}

= \sf{\dfrac{2sec^2\theta}{sec^2\theta} = k}

= \sf{\dfrac{2\cancel{sec^2\theta}}{\cancel{sec^2\theta}} = k}

= \sf{2 = k}

=> \sf{k = 2}

Therefore, the value of k is 2.

______________________________________

How did I solve it?

→ For this question we had to solve the LHS first in order to find the value of LHS which is equal to RHS for finding the value of k. So I first solved the LHS and found it's value and after equating LHS with RHS we got the value of k as 2.

______________________________________

Points to remember!!!

We must know some identities like:-

\sf{sin^2\theta + cos^2\theta = 1}

\sf{\implies sin^2\theta = 1-cos^2\theta}

\sf{\implies cos^2\theta = 1-sin^2\theta}

\:

\sf{1+tan^2\theta = sec^2\theta}

\sf{\implies sec^2\theta - tan^\theta = 1}

\sf{\implies sec^2\theta - 1 = tan^2\theta}

\:

\sf{1+cot^2\theta = cosec^2\theta}

\sf{\implies cosec^2\theta - cot^2\theta = 1}

\sf{\implies cosec^2\theta - 1 = cot^2\theta}

______________________________________


brainlyofficial11: thanks :)
Anonymous: Welcome :)
Answered by gurmanpreet1023
7

sec^2 theta (1+sin thata ) ( 2- sin theta ) = sec ^2 theta ( 1-sin theta) (a+b) (a-b) = (a^2 - b^2) =sec^2 theta .cos ^2 theta =1. ( cos sq. theta + sin sq theta =1) k=1

Similar questions