Math, asked by CopyThat, 1 month ago

\bold{If\;the\;mean\;of\;x\;and\;\dfrac{1}{x}\;is\;M.Then\;the\;mean\;of\;x^2\;and\dfrac{1}{x^2}\;is\;KM^2-1\;find\;K?\;}

Answers

Answered by shadowsabers03
116

Given that mean of x and 1/x is M, i.e.,

\small\text{$\longrightarrow\dfrac{\left(x+\dfrac{1}{x}\right)}{2}=M$}

\small\text{$\longrightarrow x+\dfrac{1}{x}=2M\quad\dots(1)$}

Now given that mean of x² and 1/x² is KM² - 1.

\small\text{$\longrightarrow KM^2-1=\dfrac{\left(x^2+\dfrac{1}{x^2}\right)}{2}\quad\dots(2)$}

We need to find value of K.

We see that,

\small\text{$\longrightarrow x^2+\dfrac{1}{x^2}=x^2+\dfrac{1}{x^2}+2-2$}

\small\text{$\longrightarrow x^2+\dfrac{1}{x^2}=x^2+2\cdot x\cdot\dfrac{1}{x}+\left(\dfrac{1}{x}\right)^2-2$}

\small\text{$\longrightarrow x^2+\dfrac{1}{x^2}=\left(x+\dfrac{1}{x}\right)^2-2$}

Then (2) becomes,

\small\text{$\longrightarrow KM^2-1=\dfrac{\left(x+\dfrac{1}{x}\right)^2-2}{2}$}

From (1),

\small\text{$\longrightarrow KM^2-1=\dfrac{\left(2M\right)^2-2}{2}$}

\small\text{$\longrightarrow KM^2-1=\dfrac{4M^2-2}{2}$}

\small\text{$\longrightarrow KM^2-1=2M^2-1$}

\small\text{$\Longrightarrow\underline{\underline{K=2}}$}

Hence value of K is 2.

Answered by SparklingBoy
139

Question :-

If the mean of  \large\rm x \:  \: and \:  \:  \dfrac{1}{x} is M.

And the mean of  \large\rm x^2 \:  \: and \:  \:  \dfrac{1}{x^2} is KM²

then Find the Value of K.

Answer :-

 \large\pink{\pmb{\frak{ \text The \:   \text Value  \: of \:  \text K  \: is \:  2}}}

Step by step Explanation :-

Given in the Question that the mean of  \large\rm x \:  \: and \:  \:  \dfrac{1}{x} is M,

:\longmapsto \rm  \frac{x +  \dfrac{1}{x} }{2}  = M \\

:\longmapsto \rm x +  \frac{1}{x}  = 2M \\

 \large \bigstar Squaring Both Sides :

:\longmapsto \rm  \bigg(x +  \frac{1}{x}  \bigg)^{2}  = 4 {M}^{2}  \\

:\longmapsto \rm  {x}^{2}  +  \frac{1}{x {}^{2} }  + 2.x. \frac{1}{x}  = 2M {}^{2}  \\

:\longmapsto \rm  {x}^{2}  +  \frac{1}{{x}^{2} }  + 2 = 4M {}^{2}  \\

\purple{ :\longmapsto  \underline {\boxed{{\bf  {x}^{2} +  \frac{1}{ {x}^{2} }   = 4M {}^{2}  - 2} }}} \\

Also According To Question the mean of  \large\rm x^2 \:  \: and \:  \:  \dfrac{1}{x^2} is KM² ,

:\longmapsto \rm  \frac{ {x}^{2}  +  \dfrac{1}{ {x}^{2} } }{2}  =  {KM}^{2}  - 1 \\

:\longmapsto \rm  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 2(KM {}^{2} - 1) \\

:\longmapsto \rm  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 2KM {}^{2}  - 2 \\

 \large \red\bigstar Substituting Value of  \large\rm x^2 +  \dfrac{1}{x^2} :

:\longmapsto \rm 4M {}^{2}   - \cancel{2}= 2KM {}^{2}    - \cancel{2} \\

:\longmapsto \rm 4 \:  \cancel{M {}^{2} } = 2 K  \:  \cancel{M^{2} } \\

:\longmapsto \rm2 K =4 \\

:\longmapsto \rm K =  \cancel \frac{4}{2}  \\

\purple{ \large :\longmapsto  \underline {\boxed{{\bf K = 2} }}}

Therefore,

\large \bf \blue\maltese \: \: \orange{ \underbrace{ \underline{The\:Value \:  of \:  K  \: is \:  2}}}

Similar questions