Math, asked by khushi02022010, 8 months ago

\bold\pink{Question:-}
Which term of the following sequences:
(a) \: 2 ,2 \sqrt{2} ,4,...is \: 128 \:  ?
(b) \:  \sqrt{3} ,3,3 \sqrt{3} ,...is \: 729?
(c) \: \frac{1}{3} , \frac{1}{9} , \frac{1}{27} ,...is \:  \frac{1}{19683} ?

Answers

Answered by Anonymous
119

\huge\bold\pink{Answer:-}

 \bold{The \:  Given  \: sentences \:  is \: 2 ,2 \sqrt{2} ,4,...}

\bold\pink{Here, }a = 2 \: and \: r \:  =  \:  \frac{2 \sqrt{2} }{2}  =  \sqrt{2}

Let the{n}^{th} term of the given sequence be 127.

  = > \bold{(2)( \sqrt{2} {)}^{n - 1} = 128 }

 =  >  \bold{ (2)(2 {)}^{ \frac{n - 1}{2} } =  {(2)}^{7}  }

 =  >  \bold{w {(2)}^{ \frac{n - 1}{2} }   { + }^{1} =  {(2)}^{7}  }

 \bold{∴ \:  \frac{n - 1}{2} + 1 = 7 }

  =  > \bold{ \frac{n - 1}{2} + 1 = 7 }

 =  >  \bold{n - 1 = 12}

 =  >  \bold{n = 13}

\bold\pink{Thus,}

The {13}^{th} term of the given sequence is 128.

____________________________________

__________________________________________

the \: given \: sequence \: is \sqrt{3},3 ,3 \sqrt{3} ,...

a \:  =  \sqrt{3} \:  and \: r \:  =  \frac{3}{ \sqrt{3} }  =  \sqrt{3}

Let the {n}^{th} term of the given sequence be 729.

 \bold{an \:  =  {ar}^{n - 1} }

 \bold{∴ \:  {ar}^{n - 1} = 723 }

 =  >  \bold{( \sqrt{ 3} )( \sqrt{3}  {)}^{ n - 1} = 729 }

 \bold{ =  > (3) \frac{1}{2} (3) \frac{n - 1}{2}  =  {(3)}^{6} }

 \bold{ =  > (3 {)}^{ \frac{1}{2} +  \frac{n - 1}{2}  }  = (3 {)}^{6} }

 \bold{∴ \:  \frac{1}{2}  +  \frac{n - 1}{2}  = 6}

 \bold{ =  >  \frac{1 + n - 1}{2} = 6 }

 \bold{n = 12}

\bold\pink{Thus,}

The {12}^{th} term of the given sequence is 728

____________________________________

__________________________________________

the \: given \: sequence \: is \:  \frac{1}{3}  ,  \frac{1}{9}  ,  \frac{1}{27}  , ...

\bold\pink{Here,}a =  \frac{1}{3 } \:  and \: r \:  =  \frac{1}{9}  +  \frac{1}{3}  =  \frac{1}{3}

Let the {n}^{th} term of the given sequence be \frac{1}{19683}

  \bold{an \:  =  {ar}^{n - 1} }

 \bold{∴a {r}^{n - 1} }

\bold{ =  > ( \frac{1}{3} ) (\frac{1}{3} {)}^{n - 1}  =  \frac{1}{19683} }

 \bold{ {( \frac{1}{3} )}^{n}( \frac{1}{3} {)}^{9}    }

 \bold{n \:  = 9}

\bold\pink{Thus,}

The {9}^{th} term of the given sequence is \frac{1}{19683}

Answered by XxDazzlingBeautyXx
28

Answer:

Refers to the attachment....

Attachments:
Similar questions