Math, asked by TheQuantumMan, 7 months ago

\bold\pink{solve\:the\:above\:question}

•useless answer/random letter answer not allowed.
•wrong answer also not allowed.​

Attachments:

Answers

Answered by Anonymous
7

 \sec ^{2} (7 - 4x)dx \\ let \: 7 - 4x =  > t

then - 4dx = t

 \sec^{2} t \frac{dt}{ - 4}

 =  -  \frac{1}{4} \:  \sec ^{2}t \: dt

 =  \:  \frac{ - 1}{4} tant + c

 =  \:  \frac{ - 1}{4} tan \: (7 - 4x) + c

\bold\purple{mark\: it\: brainliest}

Answered by MissSolitary
3

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \underline{ \boxed{{ \huge{ \bf{ S}}} \rm{OLUTION :-}}}

------------------------

 :  \longrightarrow \bold{ \blue{{ \: {sec}^{2}(7 - 4x)  }}}

------------------------

Let 7 - 4x = m.

Differentiate both sides by w, r, t, x.

 :  \rightarrow \bold{ \:  \dfrac{dm}{dx}  = 0 - 4}

 :  \rightarrow \bold{  \dfrac{dm}{dx}  =  - 4}

 :  \rightarrow \bold{ dx =  \dfrac{dm}{ - 4} }

 :  \rightarrow \bold{ dx =  -  \dfrac{dm}{4} }

Now,

 :  \rightarrow \bold{  { \huge{\int}} {sec}^{2} (7 - 4x) \: . \: dx}

Since,

7 - 4x = t and,

dx = - dm/4

On putting these values,

 :  \rightarrow \bold{I =  { \huge{ \int}} \:  {sec}^{2}(m) \: . \: ( -  \dfrac{dm}{4}) }

Taking, - 1/4 as common,

 :  \rightarrow \bold{I =  -  \dfrac{1}{4}  \:  { \huge{ \int}} \:  {sec}^{2}(m) \: . \: dm}

 :  \rightarrow \bold {I =  \dfrac{1}{4} \:  tan(m) +C }

since,

m = 7 - 4x

  :  \rightarrow   \boxed{\bold{  \: \: I  =  \dfrac{1}{4}  \: tan(7 - 4x) + C} \:  \: }

------------------------

@MissSolitary ✌️

------------------------

Similar questions