Math, asked by Anonymous, 1 year ago


 \bold{Prove  \: That \:  ,  \: Cos  \: 4x \:  =  \: 1 -  {Sin}^{2}x \:  \times  {Cos }^{2}}

Answers

Answered by cuteboy406036
0

Answer:

cos2(2x)+sin2(2x)=1

Explanation:

Remember the equation cos2x+sin2x=1? 

Well the x refers to any number so if your number is 2x, then cos22x+sin22x=1

You can also prove this by using the double angle formula

cos2(2x)+sin2(2x)

=(cos2x−sin2x)2+(2sinxcosx)2

=cos4x−2sin2xcos2x+sin4x+4sin2xcos2x

=cos4x+2sin2xcos2x+sin4x

=(cos2x+sin2x)2

=12

=1

please mark as brainlist and follow me

Answered by vishakaa
2

Note that cos4x=(cos2x)2

L.H.S.

=cos^4x−sin^4x

=(cos^2x)^2−(sin^2x)^2

=(cos^2x+sin^2x)(cos^2x−sin^2x)

=(cos^2x+sin^2x)(cos^2x+sin^2x−2sin^2x)

=(1)(1−2sin^2x)

=1−2sin^2x

=R.H.S.

Similar questions