Math, asked by Anonymous, 1 year ago

{\bold{\purple{\small{Hey Frndz}}}}

If
3a + 2b = 5c \: and \: abc = 4

Find the value of :
27 {a}^{3}  + 8 {b}^{3}  - 125 {c}^{3}

Answers

Answered by siddhartharao77
8

Answer:

-360

Step-by-step explanation:

Given Equation is 3a + 2b = 5c.

On cubing both sides, we get

⇒ (3a + 2b)³ = (5c)³

⇒ 27a³ + 8b³ + 3(3a)(2b)(3a + 2b) = 125c³

⇒ 27a³ + 8b³ + 18ab(5c) = 125c³

⇒ 27a³ + 8b³ + 90abc = 125c³

Given, abc = 4

⇒ 27a³ + 8b³ + 90(4) = 125c³

27a³ + 8b³ - 125c³ = -360.

Hope it helps!

Answered by Anonymous
16

\huge\bf\mathscr\pink{Your\: Answer}

-360

step-by-step explanation:

Given,

3a + 2b = 5c \: and \: abc = 4

On cubing both sides,

we get,

⇒ (3a + 2b)³ = (5c)³

expanding the equation,

we get,

⇒ 27a³ + 8b³ + 3(3a)(2b)(3a + 2b) = 125c³

But, it is given,

( 3a + 2b ) = 5c

Putting this value in the equation,

we get,

⇒ 27a³ + 8b³ + 18ab(5c) = 125c³

⇒ 27a³ + 8b³ + 90abc = 125c³

Again,

It is given that,

abc = 4

Putting this value in the equation,

we get,

⇒ 27a³ + 8b³ + 90(4) = 125c³

⇒ 27a³ + 8b³ - 125c³ = -360.

Similar questions