Math, asked by Anonymous, 1 month ago


 \bold \red{Differentiate \:  y= 5x^{-4}}


❖ᴏɴʟʏ ᴘʀᴏᴘᴇʀ ꜱᴏʟᴠᴇᴅ ᴀɴꜱᴡᴇʀ ᴡɪᴛʜ ɢᴏᴏᴅ ᴇxᴘʟᴀɴᴀɪᴏɴ ɴᴇᴇᴅᴇᴅ
❖ ɴᴏ ꜱᴘᴀᴍᴍɪɴɢ
❖ᴏɴʟʏ ꜰᴏʀ ᴍᴏᴅᴇʀᴀᴛᴏʀꜱ, ʙʀᴀɪɴʟʏ ꜱᴛᴀʀꜱ ᴀɴᴅ ᴏᴛʜᴇʀ ʙᴇꜱᴛ ᴜꜱᴇʀꜱ​​

Answers

Answered by Anonymous
5

Given :  y=5x^{-4}

To find : Differentiation of y w.r.t. x

Solution :

 \implies y = 5 {x}^{ - 4}

Differentiating both sides w.r.t. x, we get :

 \implies  \dfrac{dy}{dx}  = \dfrac{d}{dx} ( 5 {x}^{ - 4} )

 \implies  \dfrac{dy}{dx}  =5 \times  \dfrac{d}{dx} ( {x}^{ - 4} )

We know that,

  •  \boxed{ \dfrac{d}{dx} ( {x}^{n} ) = n{x}^{n - 1} }

By applying this, we get :

{ \implies  \dfrac{dy}{dx}  =5 \times ( - 4) \times  {x}^{ - 4 - 1} }

{ \implies  \dfrac{dy}{dx}  = - 20 \times  {x}^{ - 5} }

 \underline{ \boxed{ \implies  \dfrac{dy}{dx}  =  \dfrac{ - 20}{ {x}^{5}  }}}

Hence this is the required result.

‎ ‎ ‎

Learn more :

Find the differentiation or sin x

https://brainly.in/question/45317798

‎ ‎ ‎

Integrate x√(x+2) dx using u substitution method

https://brainly.in/question/44194630

‎ ‎ ‎

Prove the chain rule of differentiation

https://brainly.in/question/45318358

‎ ‎ ‎

How will you evaluate d/dx ( √x+√x+√x+√..∞ )

https://brainly.in/question/45857738

‎ ‎ ‎

Find d/dx(5^4^3^2^1^x)

https://brainly.in/question/45392005

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y =  {5x}^{ - 4}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y = \dfrac{d}{dx} {5x}^{ - 4}

We know,

\red{\rm :\longmapsto\:\boxed{ \tt{ \: \dfrac{d}{dx}k \: f(x) = k \: \dfrac{d}{dx}f(x) \: }}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = 5\dfrac{d}{dx} {x}^{ - 4}

We know,

\red{\rm :\longmapsto\:\boxed{ \tt{ \: \dfrac{d}{dx} {x}^{n} \:  =  \:  {nx}^{n - 1} \: }}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = 5 \times ( - 4) {x}^{ - 4 - 1}

\rm :\longmapsto\:\dfrac{dy}{dx} =  - 20{x}^{ - 5}

\rm :\longmapsto\:\dfrac{dy}{dx} =  -  \: \dfrac{20}{ {x}^{5} }

Hence,

 \purple{\rm \implies\:\boxed{ \bf{ \: \dfrac{dy}{dx} =  -  \:  \frac{20}{ {x}^{5} } \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

 \green{\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}}

Similar questions