Math, asked by Anonymous, 17 days ago


 \bold \red{Find   \: \frac{dy}{dx}   \: if  \: y= \cos^{5}x}


❖ᴏɴʟʏ ᴘʀᴏᴘᴇʀ ꜱᴏʟᴠᴇᴅ ᴀɴꜱᴡᴇʀ ᴡɪᴛʜ ɢᴏᴏᴅ ᴇxᴘʟᴀɴᴀɪᴏɴ ɴᴇᴇᴅᴇᴅ
❖ ɴᴏ ꜱᴘᴀᴍᴍɪɴɢ
❖ᴏɴʟʏ ꜰᴏʀ ᴍᴏᴅᴇʀᴀᴛᴏʀꜱ, ʙʀᴀɪɴʟʏ ꜱᴛᴀʀꜱ ᴀɴᴅ ᴏᴛʜᴇʀ ʙᴇꜱᴛ ᴜꜱᴇʀꜱ​​​

Answers

Answered by Sahan677
8

Differentiate separately both sides of the equation (treat y as a function of x)

\frac{d}{dx}(y((x)=\frac{d}{dx}(cos^5(x))

Differentiate the RHS of the equation.

The function cos⁵(x) is the composition f(g(x)) of two functions f(u)=u⁵ and g(x)=cos(x).

Apply the chain rule

{ \bold \red{\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)}}

{ \bold \red{\color{red}{\left(\frac{d}{dx} \left(\cos^{5}{\left(x \right)}\right)\right)} = \color{red}{\left(\frac{d}{du} \left(u^{5}\right) \frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)}}}

Apply the power rule

 \bold \red{\frac{d}{du} \left(u^{n}\right) = n u^{n - 1} \:  with  \: n = 5}

 \bold{\color{red}{\left(\frac{d}{du} \left(u^{5}\right)\right)} \frac{d}{dx} \left(\cos{\left(x \right)}\right) = \color{red}{\left(5 u^{4}\right)} \frac{d}{dx} \left(\cos{\left(x \right)}\right)}

Return to the old variable:

 {\bold \red{ 5\color{red}{\left(u\right)}^{4} \frac{d}{dx} \left(\cos{\left(x \right)}\right) = 5 \color{red}{\left(\cos{\left(x \right)}\right)}^{4} \frac{d}{dx} \left(\cos{\left(x \right)}\right)}} \\  \bold \red{The \:  derivative  \: of \:  the  \: cosine  \: is  \: \frac{d}{dx} \left(\cos{\left(x \right)}\right) = - \sin{\left(x \right)}}

{ \bold \red{5 \cos^{4}{\left(x \right)} \color{red}{\left(\frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)} = 5 \cos^{4}{\left(x \right)} \color{red}{\left(- \sin{\left(x \right)}\right)}}}

Thus,

 {\bold \red{\frac{d}{dx} \left(\cos^{5}{\left(x \right)}\right) = - 5 \sin{\left(x \right)} \cos^{4}{\left(x \right)}}}

Therefore,

 \bold \red{\frac{dy}{dx} = - 5 \sin{\left(x \right)} \cos^{4}{\left(x \right)}}

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y =  {cos}^{5}x

can be rewritten as

\rm :\longmapsto\:y =  {(cosx)}^{5}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} y = \dfrac{d}{dx}  {(cosx)}^{5}

We know

\boxed{ \tt{ \: \dfrac{d}{dx}  {x}^{n}  \:  =  \:  {nx}^{n - 1} \: }}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx}  = 5 {(cosx)}^{5 - 1}\dfrac{d}{dx} cosx

We know

\boxed{ \tt{ \: \dfrac{d}{dx} cosx \:  =  \:  -  \: sinx \: }}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx}  = 5 {(cosx)}^{4} \times ( - sinx)

\rm \implies\:\boxed{ \tt{ \: \dfrac{d}{dx}  {cos}^{5}x \:  = \:   - \:  5  \: {cos}^{4}x \: sinx \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions