prove that✔️
cos^4A -cos^2A= sin^4A - sin ^2 A
wrong Answer ⚠️ Will be reported
Answers
Required Answer:-
Given to prove:
Proof:
Taking LHS,
We know that,
So,
As we know that,
Therefore,
Now, multiply,
Taking RHS,
Hence, LHS = RHS (Hence Proved)
Important Formula:
Answer:
Required Answer:-
Given to prove:
\rm \mapsto \cos^{4} (x) - { \cos}^{2} (x) = { \sin}^{4} (x) - { \sin}^{2} (x)↦cos
4
(x)−cos
2
(x)=sin
4
(x)−sin
2
(x)
Proof:
Taking LHS,
\rm { \cos}^{4} (x) - { \cos}^{2} (x)cos
4
(x)−cos
2
(x)
\rm = { \cos}^{2} (x) \{ { \cos}^{2} (x) - 1 \}=cos
2
(x){cos
2
(x)−1}
\rm = { \cos}^{2} (x) \times - 1 \{ 1 - { \cos}^{2} (x)\}=cos
2
(x)×−1{1−cos
2
(x)}
\rm = - { \cos}^{2} (x) \{ 1 - { \cos}^{2} (x)\}=−cos
2
(x){1−cos
2
(x)}
We know that,
\rm \implies { \sin}^{2} (x) + { \cos }^{2} (x) = 1⟹sin
2
(x)+cos
2
(x)=1
\rm \implies { \sin}^{2} (x) = 1 - { \cos }^{2} (x)⟹sin
2
(x)=1−cos
2
(x)
So,
\rm- { \cos}^{2} (x) \{ 1 - { \cos}^{2} (x)\}−cos
2
(x){1−cos
2
(x)}
\rm = - { \cos}^{2} (x) \times \sin ^{2} (x)=−cos
2
(x)×sin
2
(x)
\rm = { \cos}^{2} (x) \times (- \sin ^{2} (x) )=cos
2
(x)×(−sin
2
(x))
As we know that,
\rm \implies { \cos }^{2} (x) = 1 - { \sin }^{2} (x)⟹cos
2
(x)=1−sin
2
(x)
Therefore,
\rm { \cos}^{2} (x) \times (- \sin ^{2} (x) )cos
2
(x)×(−sin
2
(x))
\rm = (1 - \sin^{2} (x)) \times (- \sin ^{2} (x) )=(1−sin
2
(x))×(−sin
2
(x))
Now, multiply,
\rm = - \sin ^{2} (x) + { \sin }^{4} (x)=−sin
2
(x)+sin
4
(x)
\rm = { \sin }^{4} (x) - \sin ^{2} (x)=sin
4
(x)−sin
2
(x)
Taking RHS,
\rm = { \sin }^{4} (x) - \sin ^{2} (x)=sin
4
(x)−sin
2
(x)
Hence, LHS = RHS (Hence Proved)
Important Formula:
\rm { \sin}^{2}(x) + { \cos}^{2} (x) = 1sin
2
(x)+cos
2
(x)=1
\rm { \csc}^{2} (x) - \cot^{2} (x) = 1csc
2
(x)−cot
2
(x)=1
\rm { \sec}^{2} (x) - \tan^{2} (x) = 1sec
2
(x)−tan
2
(x)=1