Math, asked by Anonymous, 1 month ago


  \bold \red{\small{Find  \: the \:  derivative \:  of}}
 \bold \red{f(x) = 2x {}^{5} +3x}
•Don't spam

Answers

Answered by mathdude500
13

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) =  {2x}^{5} + 3x

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}f(x) = \dfrac{d}{dx}( {2x}^{5} + 3x)

We know

\red{\rm :\longmapsto\:\boxed{ \tt{ \: \dfrac{d}{dx}(u + v) = \dfrac{d}{dx}u + \dfrac{d}{dx}v \: }}}

So, using this, we get

\rm :\longmapsto\:f'(x) = \dfrac{d}{dx} {2x}^{5} + \dfrac{d}{dx}3x

We know,

\red{\rm :\longmapsto\:\boxed{ \tt{ \: \dfrac{d}{dx}k \: f(x) = k \: \dfrac{d}{dx}f(x) \: }}}

So, using this, we get

\rm :\longmapsto\:f'(x) =2 \dfrac{d}{dx} {x}^{5} + 3\dfrac{d}{dx}x

Now, we know that

\red{\rm :\longmapsto\:\boxed{ \tt{ \: \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1} \: }}}

So, using this, we get

\rm :\longmapsto\:f'(x) =2  \times  {5x}^{5 - 1} + 3 \times 1

\rm :\longmapsto\:f'(x) ={10x}^{4} + 3

Hence,

 \purple{\rm \implies\:\boxed{ \bf{ \: \dfrac{d}{dx}( {2x}^{5} + 3x)  ={10x}^{4} + 3 \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

 \green{\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}}

Answered by Anonymous
13

Given : \rm f(x) = 2x^{5} +3x

To find : Derivative of the given function

Solution :

To solve this problem, we should know some basic formulas for derivatives.

  •  \boxed{ \rm\dfrac{d}{dx}(x^{n} )   =n {x}^{n - 1}  }

  • \boxed{\rm \dfrac{d}{dx}k.f(x )   =k.\dfrac{d}{dx}f(x ) }

  •  \boxed{ \rm\dfrac{d}{dx}(v\pm u)=  \frac{d}{dx}(v )\pm  \dfrac{d}{dx}(u)   }

Now let's solve the given problem!!

\rm\implies f(x) = 2x^{5} +3x

On differentiating both sides w.r.t. x, we get :

\rm \implies f'(x) = \dfrac{d}{dx}(2x^{5} +3x)

\rm  \implies f'(x) = \dfrac{d}{dx}(2x^{5} +3x)

\rm  \implies f'(x) = \dfrac{d}{dx}(2x^{5}) + \dfrac{d}{dx} (3x)

\rm  \implies f'(x) = 2.\dfrac{d}{dx}(x^{5}) + \dfrac{d}{dx} (3x)

\rm  \implies f'(x) = 2(5)(x^{5 - 1}) + (3x {}^{1 - 1} )

\rm  \implies f'(x) = 10(x^{4}) + (3x {}^{0} )

\rm  \implies f'(x) = 10(x^{4}) + (3.1 )

\rm  \implies f'(x) = 10x^{4}+3

Hence the required answer is,

  \pink{ \boxed{\rm  \dfrac{d}{dx} f(x) =10 {x}^{4}  + 3}}

‎ ‎ ‎

Learn More :

Find the differentiation or sin x

https://brainly.in/question/45317798

Prove the chain rule of differentiation

https://brainly.in/question/45318358

Similar questions