Math, asked by BrainlyProgrammer, 4 months ago

 \bold{ \underbrace{ \underline{Urgent \:  \:  \: Help \:  \:  \: Request!! }}}
In the given attachment, ∆PQR is a right angled at Q and points S and T trisects side QR. Prove:
>>  \bold{ {8PT}^{2} = {3PR}^{2}  +{5PS}^{2} }
_
• Quality Answers please!
• No plagiarism​

Attachments:

Answers

Answered by BrainlyStar909
200

Let QS = x, then,

QT = 2x

QR = 3x

In ΔPQR,

PR {}^{2} =PQ {}^{2} +RQ {}^{2}

PR {}^{2} =PQ {}^{2} +(3x) {}^{2}

PR {}^{2} =PQ {}^{2} +9x {}^{2}      (1)

In Δ PQT,

PT {}^{2} =PQ {}^{2} +TQ {}^{2}

PT {}^{2} =PQ {}^{2} +2x {}^{2}

PT {}^{2} =PQ {}^{2} + 4x {}^{2}     (2)

In Δ PQS,

PS {}^{2} =PQ {}^{2} +SQ {}^{2}

PS {}^{2} =PQ {}^{2} +x {}^{2}     (3)

Now Using Equation (1) and (3),

3PR {}^{2} =5PS {}^{2} +(3PQ {}^{2} + 9x {}^{2} ) +

5(PQ {}^{2} + x {}^{2} )

= 3PQ {}^{2} + 27 {}^{2} + =5PQ {}^{2} + +5x {}^{2}

= 8PQ {}^{2} + 32{}^{2}

= 8(PQ {}^{2} + 4x {}^{2} )

From the Equation (2)

3PR {}^{2} + 5PS {}^{2} = 8PT {}^{2}

Hence Proved.

Answered by TheBrainlyStar00001
182

 \\  \mathbb{ \underline { ★ \: GIVEN}}   : -  \begin{cases} \sf  \underline{ \underline{In \:  the \:  given \:  attachment,  \: \bf ∆PQR  \sf\:  is \:  a  \: right \:  angled \:  at  \:  \bf \: Q  \sf \: and \:  points \:  \bf{ S} \:   \sf \: and \:   \bf \: T \:  \sf trisects  \: side.}} \end{cases} \\\\\\

 \\  \mathbb{  \underline {★ \:  \: TO \:  \:  FIND}}   : -  \begin{cases} \sf  \underline{ \underbrace{ \overline{ \overbrace{ \bf{Prove: - } \:  \:  \tt{ {8PT}^{2} = {3PR}^{2} +{5PS}^{2} }}}}} \end{cases} \\\\\\

 \huge \bf {\underline{ \underline { \bigstar \: {Solution} : -  }}}\\\\

Let,

  • QS = x
  • QT = 2x
  • QR = 3x

\\\\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed {\huge{☯\:\: 1}} \\\\\

 \underbrace{ \large \bf{ \purple{\underline{\dag \: In \:  \: \triangle\: PQR : -  }}}} \\\\

➙ PR² = PQ² + RQ²

➙ PR² = PQ² + (3x)²

➙ PR² = PQ² + 9x²

\\\\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed {\huge{☯\:\:2}} \\\\\

\\\\  \underbrace{ \large \bf{ \blue{\underline{\dag \: In \:  \: \triangle\:PQT  : -  }}}} \\\\

➙ PT² = PQ² + TQ²

➙ PT² = PQ² + 2x²

➙ PT² = PQ² + 4x²

\\\\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed {\huge{☯\:\:3}} \\\\\

\\\\  \underbrace{ \large \bf{ \pink{\underline{\dag \: In \:  \: \triangle\: PQS : -  }}}} \\\\

➙ PS² = PQ² + SQ²

➙ PS² = PQ² + x²

\\\\  \underbrace{ \large \bf{\underline{\dag Then,  \red{\: use \: equation \: 1 \: and \: 3  ,}}}} \\\\

➙ 3PR² = 5PS² + (3 PQ² + 9x²) + 5(PQ² + x²)

➙ 3PQ² + 27² + = 5PQ² + 5x²

➙ 8PQ² + 32²

➙ 8(PQ² + 4x²)

\\\\ \underbrace{ \large \bf{\underline{\dag Then,  \red{\: from \: equation \:2,}}}} \\\\

3PR² + 5PS² = 8PT²

 \large{ \boxed{\mathbf{\overbrace{\underbrace{\fcolorbox{lime}{black}{ \pink{Hence \: proved \:!! }}}}}}}

★ Hope it helps u ★

Similar questions