Math, asked by itzmejayant, 1 day ago

\bold{x+y=\frac{7}{2}}
\bold{xy=\frac{5}{2}}
\bold{\blue{Then\:find\:the\:value\:of\:}x²-y²\:\blue{and}\: x-y}

Answers

Answered by rk500raghvendra
7

\huge\bold{\color{aqua}{Solution :-}}

\bold{\purple{\text{ it's given in the question }}}

\qquad\bold{\color{blue}{x+y=\color{yellow}{\frac{7}{2}}\quad \color{green}{;} \quad\color{blue}{ xy=}\color{yellow}{\frac{5}{2}}}}

\bold{\purple{\text{To find the value of }}}

\qquad\bold{\color{red}{x-y }\quad \color{green}{\& }\color{red}{\quad x^2-y^2}}

\purple{\bold{\text{We know that}}}

\quad\orange{\bold{(x-y)^2=(x+y)^2-4xy}}

\purple{\bold{\text{On substituting values}}}

\Rightarrow\bold{(x-y)^2=\big(\frac{7}{2}\big)^2-4\big(\frac{5}{2}\big)}

\Rightarrow\bold{(x-y)^2=\big(\frac{7^2}{2^2}\big)-\red{\cancel{\blue{4}}}^{\green{2}}\big(\frac{5}{\red{\cancel{\blue{2}}}}\big)}

\Rightarrow\bold{(x-y)^2=\frac{49}{4}-2×5}

\Rightarrow\bold{(x-y)^2=\frac{49}{4}-10}

\Rightarrow\bold{(x-y)^2=\frac{49-40}{4}}

\Rightarrow\bold{(x-y)^2=\frac{9}{4}}

\Rightarrow\bold{x-y=\pm\sqrt{\frac{9}{4}}}

\Rightarrow\bold{\green{\boxed{\red{x-y}=\pink{\pm\frac{3}{2}}}}}

\purple{\bold{\text{We know that}}}

\quad\orange{\bold{x^2-y^2=(x+y)(x-y)}}

\purple{\bold{\text{On substituting values}}}

\Rightarrow\bold{x^2-y^2=\frac{7}{2}×\bigg(\pm\frac{3}{2}\bigg)}

\Rightarrow\bold{x^2-y^2=\pm\frac{3×7}{2×2}}

\Rightarrow\bold{\green{\boxed{\red{x^2-y^2}=\pink{\pm\frac{21}{4}}}}}

Similar questions