Math, asked by TrustedAnswerer19, 1 day ago


\boxed{\begin{array}{cc}\bf \: if \:  \:  \rm \: ( {x - y)}^{2}  =  \frac{x}{y} , \:  \: then \: prove \: that :  \\ \\   \\ \displaystyle \int  \rm \:  \frac{dx}{(x - 3y) {}^{2} }   =  \frac{1}{2} \ln [( {x - y)}^{2}  - 1] + c\end{array}}

Answers

Answered by mathdude500
51

Correct Statement :-

If

\rm :\longmapsto\: {(x - y)}^{2} = \dfrac{x}{y}

Prove that,

\rm :\longmapsto\:\dfrac{1}{2}log[ {(x - y)}^{2} - 1]  = \displaystyle \int \frac{dx}{x - 3y}

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\: {(x - y)}^{2} = \dfrac{x}{y}  -  -  -  - (1)

Let assume that,

\rm :\longmapsto\:I =  \displaystyle \int \:  \frac{dx}{x - 3y}  -  -  - (2)

Let further assume that

\rm :\longmapsto\:M = \dfrac{1}{2}log[ {(x - y)}^{2} - 1]  -  -  - (3)

On differentiating both sides w. r. t. x

\rm :\longmapsto\:\dfrac{d}{dx}M = \dfrac{1}{2}\dfrac{d}{dx}log[ {(x - y)}^{2} - 1]

\rm :\longmapsto\:\dfrac{dM}{dx} = \dfrac{1}{2[ {(x - y)}^{2} - 1] }\dfrac{d}{dx}[ {(x - y)}^{2} - 1]

\rm :\longmapsto\:\dfrac{dM}{dx} = \dfrac{1}{2[ {(x - y)}^{2} - 1] }[2{(x - y)}]\dfrac{d}{dx}(x - y)

\rm :\longmapsto\:\dfrac{dM}{dx} = \dfrac{1}{[ {(x - y)}^{2} - 1] }[{(x - y)}]\bigg[1 - \dfrac{dy}{dx} \bigg]

\rm :\longmapsto\:\dfrac{dM}{dx} = \dfrac{x - y}{[ {(x - y)}^{2} - 1] }\bigg[1 - \dfrac{dy}{dx} \bigg] -  -  - (4)

Now, from equation (1),

\rm :\longmapsto\: {(x - y)}^{2} = \dfrac{x}{y}

\rm :\longmapsto\:y{(x - y)}^{2}  = x

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y{(x - y)}^{2}  = \dfrac{d}{dx}x

\rm :\longmapsto\:y\dfrac{d}{dx}{(x - y)}^{2}  +  {(x - y)}^{2}\dfrac{d}{dx}y  = 1

\rm :\longmapsto\:2y(x - y)\dfrac{d}{dx}{(x - y)}  +  {(x - y)}^{2}\dfrac{dy}{dx} = 1

\rm :\longmapsto\:2y(x - y)\bigg(1 - \dfrac{dy}{dx}\bigg)  +  {(x - y)}^{2}\dfrac{dy}{dx} = 1

\rm :\longmapsto\:2y(x - y) - 2y(x - y)\dfrac{dy}{dx} +  {(x - y)}^{2}\dfrac{dy}{dx} = 1

\rm :\longmapsto\:\dfrac{dy}{dx}[ {(x - y)}^{2}  - 2y(x - y)] = 1 - 2y(x - y)

\rm :\longmapsto\:\dfrac{dy}{dx}(x - y)[x - y  - 2y] = 1 - 2y(x - y)

\rm :\longmapsto\:\dfrac{dy}{dx}(x - y)[x - 3y] = 1 - 2y(x - y)

\rm \implies\:\boxed{ \tt{ \: \dfrac{dy}{dx} =  \dfrac{1 - 2y(x - y)}{(x - y)(x - 3y)} }} -  -  - (5)

On substituting equation (5) in equation (4), we get

\rm :\longmapsto\:\dfrac{dM}{dx} = \dfrac{x - y}{[ {(x - y)}^{2} - 1] }\bigg[1 - \dfrac{1 - 2y(x - y)}{(x - y)(x - 3y)} \bigg]

\rm :\longmapsto\:\dfrac{dM}{dx} = \dfrac{x - y}{[ {(x - y)}^{2} - 1] }\bigg[ \dfrac{(x - y)(x - 3y) - 1 +  2y(x - y)}{(x - y)(x - 3y)} \bigg]

\rm :\longmapsto\:\dfrac{dM}{dx} = \dfrac{1}{[ {(x - y)}^{2} - 1] }\bigg[ \dfrac{(x - y)[x - 3y +2y] - 1}{(x - 3y)} \bigg]

\rm :\longmapsto\:\dfrac{dM}{dx} = \dfrac{1}{[ {(x - y)}^{2} - 1] }\bigg[ \dfrac{(x - y)(x - y) - 1}{(x - 3y)} \bigg]

\rm :\longmapsto\:\dfrac{dM}{dx} = \dfrac{1}{[ {(x - y)}^{2} - 1] }\bigg[ \dfrac{ {(x - y)}^{2}  - 1}{(x - 3y)} \bigg]

\bf\implies \:\boxed{ \tt{ \: \dfrac{dM}{dx} =  \frac{1}{x - 3y} \: }}

So, on integrating both sides, we get

\rm :\longmapsto\:\displaystyle \int\: \dfrac{dM}{dx}  \: dx=  \displaystyle \int\dfrac{1}{x - 3y} \:dx

\rm :\longmapsto\:M=  \displaystyle \int\dfrac{1}{x - 3y} \:dx -  -  - (6)

Hence, From equation (3) and equation (6), we have

\rm :\longmapsto\:\dfrac{1}{2}log[ {(x - y)}^{2} - 1]  = \displaystyle \int \frac{dx}{x - 3y}

Answered by talpadadilip417
3

Step-by-step explanation:

 \color{red}  \text{ \tt \: Let \( \tt P= \displaystyle \tt\int \dfrac{d x}{(x-3 y)}=\frac{1}{2} \ln \left\{(x-y)^{2}-1\right\} \)}

 \color{blue} \displaystyle \because \:  \:  \:  \tt \: P=\int \frac{d x}{(x-3 y)}

 \color{navy} \begin{aligned} \\&  \tt  \Rightarrow \quad \frac{d P}{d x}=\frac{1}{(x-3 y)}  \\ \\  & \tt Also,  \quad P=\frac{1}{2} \ln \left\{(x-y)^{2}-1\right\}   \\ \\ &   \tt\therefore \quad \frac{d P}{d x}=\frac{2(x-y)\left(1-\frac{d y}{d x}\right)}{2\left\{(x-y)^{2}-1\right\}}=\frac{(x-y)\left(1-\frac{d y}{d x}\right)}{(x-y)^{2}-1} \\ \\ &   \tt \text{Also,}  \quad P=\frac{1}{2} \ln \left\{(x-y)^{2}-1\right\}  \\ \\ &   \tt \therefore \quad \frac{d P}{d x}=\frac{2(x-y)\left(1-\frac{d y}{d x}\right)}{2\left\{(x-y)^{2}-1\right\}}=\frac{(x-y)\left(1-\frac{d y}{d x}\right)}{(x-y)^{2}-1} \\ \\ &   \tt \text{ Given, } \quad y(x-y)^{2}=x \\ \\ &   \tt \Rightarrow \quad \frac{\ln y+2 \ln (x-y)=\ln x}{2} \frac{d y}{d x}+\frac{2}{(x-y)}\left(1-\frac{d y}{d x}\right)=\frac{1}{x} \\ \\ &   \tt \Rightarrow \quad \frac{d y}{d x}\left(\frac{1}{y}-\frac{2}{x-y}\right)=\frac{1}{x}-\frac{2}{x-y}=\frac{x-y-2 x}{x(x-y)} \\ \\ &   \tt  \Rightarrow \quad \frac{d y}{d x}\left(\frac{x-3 y}{y(x-y)}\right)=-\frac{(x+y)}{x(x-y)} \\ \\ &   \tt \text{ or }\quad \frac{d y}{d x}=-\frac{y(x+y)}{x(x-3 y)} \end{aligned}

 \color{darkviolet}\[ \begin{aligned} \text{Now, from Eq. (ii), }\\  \\ & \tt\frac{d P}{d x} =\frac{(x-y)\left\{1+\frac{y(x+y)}{x(x-3 y)}\right\}}{(x-y)^{2}-1} \\ \\  & \tt=\frac{(x-y)\left\{\frac{x^{2}-2 x y+y^{2}}{x(x-3 y)}\right\}}{\left(\frac{x}{y}-1\right)} \\ \\  & \tt=\frac{y(x-y)^{2}}{x(x-3 y)}=\frac{1}{x-3 y} \\  \\ & \text { It is true from (i) } Hence,  \int \frac{d x}{x-3 y}=\frac{1}{2} \ln \left\{(x-y)^{2}-1\right\} \\ \\ & \tt \because \quad  \text{y  is variable} \\ \\ & \tt\therefore \quad \int \frac{d x}{x-2 y} \neq \ln (x-3 y) \end{aligned} \]

Similar questions