Math, asked by Anonymous, 1 day ago


 {\boxed{ \bold \red{  \frac{d}{dx}  \bigg( \cos( \sqrt{x} ) \bigg)}}}


➡️ Don't spam

Answers

Answered by sajan6491
13

 \frac{d}{dx} ( \cos (\sqrt{x} ))

 -  \sin( \sqrt{x} )  \cdot \frac{d}{dx} ( \sqrt{x})

 -  \sin (\sqrt{x}) \frac{d}{dx} (x {}^{ \frac{1}{2} } )

 -  \sin( \sqrt{x} )  \frac{1}{2} x {}^{ \frac{ - 1}{2} }

 \frac{ -  \sin( \sqrt{x} ) }{2 \sqrt{x} }

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given function is

\red{\rm :\longmapsto\:cos \sqrt{x}}

Let assume that

\rm :\longmapsto\:y = cos \sqrt{x}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y = \dfrac{d}{dx}cos \sqrt{x}

We know,

\red{\rm :\longmapsto\:\boxed{ \tt{ \: \dfrac{d}{dx}cosx =  -  \: sinx \: }}}

So, using this identity, we get

\rm :\longmapsto\:\dfrac{dy}{dx} =  -  \: sin \sqrt{x} \: \dfrac{d}{dx} \sqrt{x}

\rm :\longmapsto\:\dfrac{dy}{dx} =  -  \: sin \sqrt{x} \: \dfrac{d}{dx} \bigg(x \bigg)  ^{\dfrac{1}{2} }

We know,

\red{\rm :\longmapsto\:\boxed{ \tt{ \: \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1} \: }}}

So, using this identity, we get

\rm :\longmapsto\:\dfrac{dy}{dx} =  -  \: sin \sqrt{x} \:  \times \dfrac{1}{2} \bigg(x \bigg)  ^{\dfrac{1}{2}  - 1}

\rm :\longmapsto\:\dfrac{dy}{dx} =  -  \: sin \sqrt{x} \: \times  \dfrac{1}{2} \bigg(x \bigg)  ^{\dfrac{1 - 2}{2}}

\rm :\longmapsto\:\dfrac{dy}{dx} =  -  \: sin \sqrt{x} \: \times  \dfrac{1}{2} \bigg(x \bigg)  ^{\dfrac{ - 1}{2}}

\rm \implies\:\boxed{ \tt{ \: \dfrac{dy}{dx} =  -  \:  \frac{sin \sqrt{x} }{2 \sqrt{x} } \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions