Math, asked by Anonymous, 1 month ago


  { \boxed{ \bold \red{ \frac{d}{dx}  \bigg( \frac{ \sqrt[In2]{x {}^{2} e  {}^{x} \sin x} }{Inx \:  \tan^{ - 1} y}  \bigg)}}}

●Don't Spam Otherwise Report ​

Answers

Answered by ashwanidhingra
0

Answer:

 { \boxed{ \bold \red{ \frac{d}{dx} \bigg( \frac{ \sqrt[In2]{x {}^{2} e {}^{x} \sin x} }{Inx \: \tan^{ - 1} y} \bigg)}}}

●Don't Spam Otherwise Report

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:\dfrac{ \sqrt[In2]{x {}^{2} e {}^{x} \sin x} }{Inx \: \tan^{ - 1} y}

Let assume that

\rm :\longmapsto\:y = \dfrac{ \sqrt[In2]{x {}^{2} e {}^{x} \sin x} }{Inx \: \tan^{ - 1} y}

can be rewritten as

\rm :\longmapsto\:y = \dfrac{ {\bigg( {x}^{2} {e}^{x}sinx \bigg) }^{\dfrac{1}{ln2} } }{Inx \: \tan^{ - 1} y}

Now, taking ln (log to the base e) on both sides, we get

\rm :\longmapsto\:ln(y) =ln \dfrac{ {\bigg( {x}^{2} {e}^{x}sinx \bigg) }^{\dfrac{1}{ln2} } }{Inx \: \tan^{ - 1} y}

We know,

\boxed{ \tt{ \: log {x}^{y} = ylogx \: }} \\  \\ \boxed{ \tt{ \: logxy = logx + logy \: }} \\  \\ \boxed{ \tt{ \: log \frac{x}{y} = logx - logy \: }}

So, using this, we get

 \rm \:  lny  = \dfrac{1}{ln2}\bigg[2ln(x) + xln(e) + ln(sinx)\bigg] - ln(ln(x) - ln( {tan}^{ - 1}x)

 \rm \:  lny  = \dfrac{1}{ln2}\bigg[2ln(x) + x + ln(sinx)\bigg] - ln(ln(x) - ln( {tan}^{ - 1}x)

On differentiating both sides w. r. t. x, we get

 \rm \:\dfrac{d}{dx}lny =\dfrac{d}{dx}\bigg\{\dfrac{1}{ln2}\bigg[2ln(x) + x + ln(sinx)\bigg] - ln(ln(x) - ln( {tan}^{ - 1}x) \bigg\}

We know,

 \\ \boxed{ \tt{ \: \dfrac{d}{dx}ln(x) =  \frac{1}{x} \: }} \\  \\ \boxed{ \tt{ \: \dfrac{d}{dx}sinx = cosx \: }} \\  \\ \boxed{ \tt{ \: \dfrac{d}{dx}x = 1 \: }} \\  \\ \boxed{ \tt{ \: \dfrac{d}{dx} {tan}^{ - 1}x =  \frac{1}{1 +  {x}^{2} } \: }} \\  \\ \boxed{ \tt{ \: \dfrac{d}{dx}f(g(x)) = f'(g(x))g'(x) \: }} \\

So, using these, we get

 \rm \:\dfrac{1}{y}\dfrac{dy}{dx}=\dfrac{1}{ln2}\bigg[\dfrac{2}{x} + 1 +  \dfrac{1}{sinx}(cosx) \bigg] - \dfrac{1}{x \: ln(x)}  - \dfrac{1}{ {tan}^{ - 1}x} \times  \dfrac{1}{1 +  {x}^{2} }

 \rm \:\dfrac{1}{y}\dfrac{dy}{dx}=\dfrac{1}{ln2}\bigg[\dfrac{2}{x}+1 + cotx\bigg] - \dfrac{1}{x \: ln(x)}-\dfrac{1}{(1 +  {x}^{2}){tan}^{ - 1}x}

 \rm \:\dfrac{dy}{dx}=y\bigg\{\dfrac{1}{ln2}\bigg[\dfrac{2}{x}+1 + cotx\bigg] - \dfrac{1}{x \: ln(x)}-\dfrac{1}{(1 +  {x}^{2}){tan}^{ - 1}x}\bigg\}

 \rm \:\dfrac{dy}{dx}=\dfrac{ \sqrt[In2]{x {}^{2} e {}^{x} \sin x} }{Inx \: \tan^{ - 1} y}\bigg\{\dfrac{1}{ln2}\bigg[\dfrac{2}{x}+1 + cotx\bigg] - \dfrac{1}{x \: ln(x)}-\dfrac{1}{(1 +  {x}^{2}){tan}^{ - 1}x}\bigg\}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

 \red{\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}}

Similar questions