Math, asked by Anonymous, 1 month ago

{ \boxed{ \bold \red{If  \:  \int f(x)  \: dx = F(x), \: then \: find \int {f}^{ - 1} (x) \: dx  }}}

Answers

Answered by parthivlakhani
1

Answer in the Attachment

mark me as Brainliest if I am Correct

Attachments:
Answered by sajan6491
17

{ \bold \red{u=f {}^{ - 1} (x), \: x = f(u), \: dx = f'(u)du}}

  \bold \red{{  = \displaystyle  \bold{\int \: u \: f'(u)}} \: du}

    \displaystyle {  \bold \red{ = \int{uf'(u) \: du}}}

 \bold \red{ = uf(u) -  \displaystyle  \bold{\int f(u) \: du}}

 \bold \red{ = f {}^{ - 1} (x)x - F(u)}

  \bold \red{= xf {}^{ - 1} (x) - F( {f}^{ - 1} (x)}

Similar questions