❖ᴏɴʟʏ ᴘʀᴏᴘᴇʀ ꜱᴏʟᴠᴇᴅ ᴀɴꜱᴡᴇʀ ᴡɪᴛʜ ɢᴏᴏᴅ ᴇxᴘʟᴀɴᴀɪᴏɴ ɴᴇᴇᴅᴇᴅ
❖ ɴᴏ ꜱᴘᴀᴍᴍɪɴɢ
❖ᴏɴʟʏ ꜰᴏʀ ᴍᴏᴅᴇʀᴀᴛᴏʀꜱ, ʙʀᴀɪɴʟʏ ꜱᴛᴀʀꜱ ᴀɴᴅ ᴏᴛʜᴇʀ ʙᴇꜱᴛ ᴜꜱᴇʀꜱ
Answers
Answered by
1
Answer:
1. Proof
Strategy: Make in terms of sin's and cos's; Use substitution.
(integral) cot x dx = (integral) cos x
sin x dx
set
u = sin x.
then we find
du = cos x dx
substitute du=cos x, u=sin x
(integral) cos x
sin x dx = (integral)
du
u
solve integral
= ln |u| + C
substitute back u=sin x
= ln |sin x| + C
Answered by
5
Given integral is
can be rewritten as
To evaluate this integral, we use method of Substitution.
So, Substitute
On differentiating both sides w. r. t. b, we get
So, on substituting these values, we get
Hence,
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Additional Information :-
Similar questions
Computer Science,
4 days ago
English,
4 days ago
English,
4 days ago
Science,
9 days ago
Math,
8 months ago
Math,
8 months ago
Social Sciences,
8 months ago