Math, asked by Anonymous, 1 month ago


 { \boxed{ \bold \red{\int \frac{e {}^{ \sqrt{x} }  }{ \sqrt{x} } dx}}}
❖ᴏɴʟʏ ᴘʀᴏᴘᴇʀ ꜱᴏʟᴠᴇᴅ ᴀɴꜱᴡᴇʀ ᴡɪᴛʜ ɢᴏᴏᴅ ᴇxᴘʟᴀɴᴀɪᴏɴ ɴᴇᴇᴅᴇᴅ
❖ ɴᴏ ꜱᴘᴀᴍᴍɪɴɢ
❖ᴏɴʟʏ ꜰᴏʀ ᴍᴏᴅᴇʀᴀᴛᴏʀꜱ, ʙʀᴀɪɴʟʏ ꜱᴛᴀʀꜱ ᴀɴᴅ ᴏᴛʜᴇʀ ʙᴇꜱᴛ ᴜꜱᴇʀꜱ​​​​

Answers

Answered by ranjeetcarpet
4

Answer:

How solid

Step-by-step explanation:

PLEASE MARK AS BRANILST AND LIKE

Answered by TrustedAnswerer19
13

{\boxed{\boxed{\begin{array}{cc}\bf \: \to \:given :  \\  \\  \displaystyle \int \rm \:  \frac{ {e}^{ \sqrt{x} } }{ \sqrt{x} }  \:  \: dx \\  \\ \orange{{\boxed{\begin{array}{cc}\bf \: substitute \:  \: u =  \sqrt{x}   \\ \\  \rm \implies \:  \frac{du}{dx}  =  \frac{d}{dx}. \sqrt{x}   =  \frac{1}{2 \sqrt{x} }  \\  \\  \therefore \rm \: dx = 2 \sqrt{x}. \: du \end{array}}}} \\  \\  \rm =\displaystyle \int \rm \:   \frac{ {e}^{u} }{u} .2 \sqrt{x}  \:  \: du \\  \\  \rm = 2\displaystyle \int \rm \:  \frac{ {e}^{u}}{ \cancel{u}}  . \cancel{u }\:  \:  \: du  \\  \\  \rm = 2\displaystyle \int \rm \:  {e}^{u}  \: du \\  \\  \rm \:  = 2 {e}^{u}  + c \\  \\  \orange{ \sf \: undo \: our \: substitution} \\  \\  \rm = 2 {e}^{ \sqrt{x} } + c \\  \\  \\   \blue{ \boxed{\therefore \displaystyle \int \rm \:  \frac{ {e}^{ \sqrt{x} } }{ \sqrt{x} } \: dx = 2 {e}^{ \sqrt{x} }    + c}} \\  \\  \sf \: c = integral \: constant\end{array}}}}

Similar questions