Math, asked by Anonymous, 24 days ago

{ \boxed{ \bold \red{ \int \limits^{ \frac{\pi}{2} }_{0} \frac{ \sqrt{ \sin x} }{ \sqrt{ \sin x } + \sqrt{ \cos x}} \: dx}}}






​ ​

Answers

Answered by sajan6491
11

 \bold \red{I=\int\limits^{\frac{\pi}{2}}_0{\frac{\sqrt{sinx}}{\sqrt{sinx}+\sqrt{cosx}}}\:dx \cdot\cdot\cdot\cdot(1)}

 \bold \red{I=\int\limits^{\frac{\pi}{2}}_0{\frac{\sqrt{sin(\frac{\pi}{2}-x)}}{\sqrt{sin(\frac{\pi}{2}-x)}+\sqrt{cos(\frac{\pi}{2}-x)}}}}

 \bold \red{I=\int\limits^{\frac{\pi}{2}}_0{\frac{\sqrt{cosx}}{\sqrt{cosx}+\sqrt{sinx}}}\:dx \cdot \cdot \cdot \cdot(2)}

 {\bold \red{2I=\int\limits^{\frac{\pi}{2}}_0{\frac{\sqrt{sinx}}{\sqrt{sinx}+\sqrt{cosx}}}\:dx+\int\limits^{\frac{\pi}{2}}_0{\frac{\sqrt{cosx}}{\sqrt{cosx}+\sqrt{sinx}}}\:dx}}

 {\bold \red{2I=\int\limits^{\frac{\pi}{2}}_0[\frac{\sqrt{sinx}}{\sqrt{sinx}+\sqrt{cosx}}+\frac{\sqrt{cosx}}{\sqrt{cosx}+\sqrt{sinx}}]\:dx}}

 \bold \red{2I=\int\limits^{\frac{\pi}{2}}_0[\frac{\sqrt{sinx}+\sqrt{cosx}}{\sqrt{sinx}+\sqrt{cosx}}]\:dx}

 \bold \red{2I=\int\limits^{\frac{\pi}{2}}_0[1]\:dx}

 \bold \red{2I=[x]^{\frac{\pi}{2}}_0}

 \bold \red{2I=\frac{\pi}{2}}

 \bold \red{2I=\frac{\pi}{2}}

 \bold \red{I=\frac{\pi}{4}}

Answered by OoAryanKingoO78
2

Answer:

 \bold \red{I=\int\limits^{\frac{\pi}{2}}_0{\frac{\sqrt{sinx}}{\sqrt{sinx}+\sqrt{cosx}}}\:dx \cdot\cdot\cdot\cdot(1)}

 \bold \red{I=\int\limits^{\frac{\pi}{2}}_0{\frac{\sqrt{sin(\frac{\pi}{2}-x)}}{\sqrt{sin(\frac{\pi}{2}-x)}+\sqrt{cos(\frac{\pi}{2}-x)}}}}

 \bold \red{I=\int\limits^{\frac{\pi}{2}}_0{\frac{\sqrt{cosx}}{\sqrt{cosx}+\sqrt{sinx}}}\:dx \cdot \cdot \cdot \cdot(2)}

 {\bold \red{2I=\int\limits^{\frac{\pi}{2}}_0{\frac{\sqrt{sinx}}{\sqrt{sinx}+\sqrt{cosx}}}\:dx+\int\limits^{\frac{\pi}{2}}_0{\frac{\sqrt{cosx}}{\sqrt{cosx}+\sqrt{sinx}}}\:dx}}

 {\bold \red{2I=\int\limits^{\frac{\pi}{2}}_0[\frac{\sqrt{sinx}}{\sqrt{sinx}+\sqrt{cosx}}+\frac{\sqrt{cosx}}{\sqrt{cosx}+\sqrt{sinx}}]\:dx}}

 \bold \red{2I=\int\limits^{\frac{\pi}{2}}_0[\frac{\sqrt{sinx}+\sqrt{cosx}}{\sqrt{sinx}+\sqrt{cosx}}]\:dx}

 \bold \red{2I=\int\limits^{\frac{\pi}{2}}_0[1]\:dx}

 \bold \red{2I=[x]^{\frac{\pi}{2}}_0}

 \bold \red{2I=\frac{\pi}{2}}

 \bold \red{2I=\frac{\pi}{2}}

 \bold \red{I=\frac{\pi}{4}}

___________________

Similar questions