Math, asked by nancy359, 1 month ago

\boxed {\boxed{ { \red{ \bold{ \underline{Question:-}}}}}}
Find the value of:-
 \frac{cos \: 60° + \:  sin \: 45°  - \:  cot \: 30 °}{tan \: 60 ° \:  +  \: sec \: 45°  -  \: cosec \: 30° \: }
\boxed {\boxed{ { \red{ \bold{ \underline{Question:-}}}}}}
Evaluate:-
8 \sqrt{3}    \times \: {cosec}^{2}    \: 30° \times  \sin(60°)  \times  \cos(60°)  \times  {cos}^{2} 45° \times  \sin(45°)  \times  \tan(30°)  \times  {cosec}^{3} 45°

Answers

Answered by abhinavkr01
1

Since,

cos 60° = 1/2

sin 45° = 1/√2

cot 30° = √3

tan 60° = √3

sec 45° = √2

cosec 30° = 2

Then,

 \frac{cos {60}^{0}  + sin {45}^{0}  - cot {30}^{0} }{tan {60}^{0}  + sec {45}^{0}  - cosec {30}^{0} }  =  \frac{ \frac{1}{2} +  \frac{1}{ \sqrt{2} }  -  \sqrt{3}  }{ \sqrt{3} +  \sqrt{2}  - 2 }   \\  \\  =  \frac{ \frac{ \sqrt{2}  + 2 - 2 \sqrt{6} }{2 \sqrt{2} } }{ \sqrt{3   }  +  \sqrt{2}   - 2}  =  \frac{ \sqrt{2}  + 2 - 2 \sqrt{6} }{2 \sqrt{6}  + 4 - 4 \sqrt{2} }

Again,

8 \sqrt{3}  \times  {cosec}^{2}  {30}^{0}  \times sin {60}^{0}  \times cos {60}^{0}  \times  {cos}^{2}  {45}^{0}  \times sin {45}^{0}  \times tan {30}^{0}  \times  {cosec}^{3}  {45}^{0}  \\  = 8 \sqrt{3}  \times  {2}^{2}  \times  \frac{ \sqrt{3} }{2}  \times  \frac{1}{2}  \times  {( \frac{1}{ \sqrt{2} }) }^{2}  \times  \frac{1}{ \sqrt{2} }  \times  \frac{1}{ \sqrt{3} }  \times  { \sqrt{2} }^{3}  \\  = 8 \sqrt{3}  \times 4 \times  \frac{ \sqrt{3} }{2}  \times  \frac{1}{2}  \times  \frac{1}{2}  \times  \frac{1}{ \sqrt{2} }  \times  \frac{1}{ \sqrt{3} }  \times 2 \sqrt{2}  \\  = 8 \sqrt{3 }  \times 1 = 8 \sqrt{3}

Hope It Helps :)

::: Please Mark As Brainliest :::

Similar questions