Answers
Given integral is
Let assume that,
We know, Variable changing property of integrals
So, above integral can also be rewritten as
Now, multiply equation (1) and (2), we get
can be rewritten as
Now, we can use polar coordinates to evaluate this integral.
Let we substitute
where,
and
It represents a circle whose center is (0, 0) and radius is r units.
So,
and
So, above integral can be rewritten as
can be rewritten as
On substituting,
So, above integral can be rewritten as
Hence, Proved
Answer:
Hello Peter...
Step-by-step explanation:
Given integral is
\rm :\longmapsto\:\displaystyle \int\limits_{- \infty}^{\infty} e^{-x^2} \: dx:⟼
−∞
∫
∞
e
−x
2
dx
Let assume that,
\rm :\longmapsto\:I = \displaystyle \int\limits_{- \infty}^{\infty} e^{-x^2} \: dx - - - (1):⟼I=
−∞
∫
∞
e
−x
2
dx−−−(1)
We know, Variable changing property of integrals
\red{\boxed{ \tt{ \: \displaystyle \int\limits_{a}^{b} \: f(x) \: dx \: = \: \displaystyle \int\limits_{a}^{b} \: f(y) \: dy \: }}}
a
∫
b
f(x)dx=
a
∫
b
f(y)dy
So, above integral can also be rewritten as
\rm :\longmapsto\:I = \displaystyle \int\limits_{- \infty}^{\infty} e^{-y^2} \: dy - - - (2):⟼I=
−∞
∫
∞
e
−y
2
dy−−−(2)
Now, multiply equation (1) and (2), we get
\rm :\longmapsto\: {I}^{2} =\displaystyle \int\limits_{- \infty}^{\infty} e^{-x^2} dx \times \displaystyle \int\limits_{- \infty}^{\infty} e^{-y^2} \: dy:⟼I
2
=
−∞
∫
∞
e
−x
2
dx×
−∞
∫
∞
e
−y
2
dy
can be rewritten as
\rm :\longmapsto\: {I}^{2} =\displaystyle \int\limits_{- \infty}^{\infty}\bigg(\displaystyle \int\limits_{- \infty}^{\infty} e^{-x^2} \times e^{-y^2} \:dx\bigg) \: dy:⟼I
2
=
−∞
∫
∞
(
−∞
∫
∞
e
−x
2
×e
−y
2
dx)dy
\rm :\longmapsto\: {I}^{2} =\displaystyle \int\limits_{- \infty}^{\infty}\bigg(\displaystyle \int\limits_{- \infty}^{\infty} e^{-x^2 - {y}^{2} } \:dx\bigg) \: dy:⟼I
2
=
−∞
∫
∞
(
−∞
∫
∞
e
−x
2
−y
2
dx)dy
\rm :\longmapsto\: {I}^{2} =\displaystyle \int\limits_{- \infty}^{\infty}\bigg(\displaystyle \int\limits_{- \infty}^{\infty} e^{-(x^2 + {y}^{2})} \:dx\bigg) \: dy:⟼I
2
=
−∞
∫
∞
(
−∞
∫
∞
e
−(x
2
+y
2
)
dx)dy
Now, we can use polar coordinates to evaluate this integral.
Let we substitute
\red{\rm :\longmapsto\: {x}^{2} + {y}^{2} = {r}^{2} }:⟼x
2
+y
2
=r
2
where,
\red{\rm :\longmapsto\:x = r \: cos\theta }:⟼x=rcosθ
and
\red{\rm :\longmapsto\:y = r \: sin\theta }:⟼y=rsinθ
It represents a circle whose center is (0, 0) and radius is r units.
So,
\red{\boxed{ \tt{ \: Limits \:of \: x \: changes \: to \: \theta \: varies \: from \: 0 \: to \: 2\pi \: }}}
Limitsofxchangestoθvariesfrom0to2π
and
\red{\rm :\longmapsto\:dx \: dy \: = \: rd \theta \: dr}:⟼dxdy=rdθdr
So, above integral can be rewritten as
\rm :\longmapsto\: {I}^{2} =\displaystyle \int\limits_{0}^{\infty}\bigg(\displaystyle \int\limits_{0}^{2\pi} d\theta \bigg) \: e^{- {r}^{2} } \:rdr:⟼I
2
=
0
∫
∞
(
0
∫
2π
dθ)e
−r
2
rdr
can be rewritten as
\rm :\longmapsto\: {I}^{2} = \displaystyle \int\limits_{0}^{\infty}\bigg(\theta \bigg)_{0}^{2\pi} \: e^{- {r}^{2} } \:rdr:⟼I
2
=
0
∫
∞
(θ)
0
2π
e
−r
2
rdr
\rm :\longmapsto\: {I}^{2} = \displaystyle \int\limits_{0}^{\infty}\bigg(2\pi - 0 \bigg) \: e^{- {r}^{2} } \:2rdr:⟼I
2
=
0
∫
∞
(2π−0)e
−r
2
2rdr
\rm :\longmapsto\: {I}^{2} = \displaystyle \int\limits_{0}^{\infty}\bigg(2\pi \bigg) \: e^{- {r}^{2} } \:rdr:⟼I
2
=
0
∫
∞
(2π)e
−r
2
rdr
\rm :\longmapsto\: {I}^{2} =\pi \displaystyle \int\limits_{0}^{\infty} \: e^{- {r}^{2} } \:2rdr:⟼I
2
=π
0
∫
∞
e
−r
2
2rdr
On substituting,
\red{\rm :\longmapsto\: {r}^{2} = t}:⟼r
2
=t
\red{\rm :\longmapsto\: 2r \: dr = dt}:⟼2rdr=dt
So, above integral can be rewritten as
\rm :\longmapsto\: {I}^{2} =\pi \displaystyle \int\limits_{0}^{\infty} \: e^{- t } \:dt:⟼I
2
=π
0
∫
∞
e
−t
dt
\rm :\longmapsto\: {I}^{2} = - \pi \: \bigg(e^{- t } \bigg)_{ - \infty }^{\infty}:⟼I
2
=−π(e
−t
)
−∞
∞
\rm :\longmapsto\: {I}^{2} = - \pi \: \bigg(e^{- \infty } - {e}^{0} \bigg)_{ 0 }^{\infty}:⟼I
2
=−π(e
−∞
−e
0
)
0
∞
\rm :\longmapsto\: {I}^{2} = - \pi \: \bigg(0 - 1 \bigg):⟼I
2
=−π(0−1)
\rm :\longmapsto\: {I}^{2} = - \pi \: \bigg( - 1 \bigg):⟼I
2
=−π(−1)
\rm :\longmapsto\: {I}^{2} = \pi \::⟼I
2
=π
\rm \implies\:\boxed{ \tt{ \: I = \sqrt{\pi} \: }}⟹
I=
π
Hence, Proved