Math, asked by Anonymous, 2 days ago

 \boxed{ \huge\bold \red { { \displaystyle \lim_{n \to \infty} } \frac{4 {n}^{2} }{ {n}^{2} + 10000 \: n } }}


❖ᴏɴʟʏ ᴘʀᴏᴘᴇʀ ꜱᴏʟᴠᴇᴅ ᴀɴꜱᴡᴇʀ ᴡɪᴛʜ ɢᴏᴏᴅ ᴇxᴘʟᴀɴᴀɪᴏɴ ɴᴇᴇᴅᴇᴅ
❖ ɴᴏ ꜱᴘᴀᴍᴍɪɴɢ
❖ᴏɴʟʏ ꜰᴏʀ ᴍᴏᴅᴇʀᴀᴛᴏʀꜱ, ʙʀᴀɪɴʟʏ ꜱᴛᴀʀꜱ ᴀɴᴅ ᴏᴛʜᴇʀ ʙᴇꜱᴛ ᴜꜱᴇʀꜱ​​​​​​​​​​​​​​​​​​​​​​​

Answers

Answered by Sahan677
7

\lim_{n \to \infty} \frac{4 n^{2}}{n^{2} + 10000 n}

Apply the constant multiple rule

  \bold{\lim_{n \to \infty} \:  c f{\left(n \right)} = c \lim_{n \to \infty}  \: f{\left(n \right)} \:  with \:  c=4  \: and f{\left(n \right)} = \frac{n}{n + 10000}:}

 \bold{\color{red}{\lim_{n \to \infty} \frac{4 n^{2}}{n^{2} + 10000 n}} = \color{red}{\left(4 \lim_{n \to \infty} \frac{n}{n + 10000}\right)}}

Multiply and divide by n:

 \bold{ \color{red}{4\lim_{n \to \infty} \frac{n}{n + 10000}} = 4 \color{red}{\lim_{n \to \infty} \frac{n}{n \frac{n + 10000}{n}}}}

Divide:

 \bold{ \color{red}{4\lim_{n \to \infty} \frac{n}{n \frac{n + 10000}{n}}} = 4 \color{red}{\lim_{n \to \infty} \frac{1}{1 + \frac{10000}{n}}}}

The limit of the quotient is the quotient of limits:

4 \color{red}{\lim_{n \to \infty} \frac{1}{1 + \frac{10000}{n}}} = 4 \color{red}{\frac{\lim_{n \to \infty} 1}{\lim_{n \to \infty}\left(1 + \frac{10000}{n}\right)}}

The limit of a constant is equal to the constant:

 \bold{ \blue{\frac{4 \color{blue}{\lim_{n \to \infty} 1}}{\lim_{n \to \infty}\left(1 + \frac{10000}{n}\right)} = \frac{4 \color{red}{1}}{\lim_{n \to \infty}\left(1 + \frac{10000}{n}\right)}}}

The limit of a sum/difference is the sum/difference of limits:

 \bold \pink{4 \color{red}{\lim_{n \to \infty}\left(1 + \frac{10000}{n}\right)}^{-1} = 4 \color{red}{\left(\lim_{n \to \infty} 1 + \lim_{n \to \infty} \frac{10000}{n}\right)}^{-1}}

The limit of a constant is equal to the constant:

 {\bold \pink{4 \left(\lim_{n \to \infty} \frac{10000}{n} + \color{brown}{\lim_{n \to \infty} 1}\right)^{-1} = 4 \left(\lim_{n \to \infty} \frac{10000}{n} + \color{red}{1}\right)^{-1}}}

Apply the constant multiple rule:

 {\bold \blue{\lim_{n \to \infty} c f{\left(n \right)} = c \lim_{n \to \infty} f{\left(n \right)} \:  with \:  c=10000\: and  \: f{\left(n \right)} = \frac{1}{n}}}

  \bold{{\color{brown}4\left(1 + \color{red}{\lim_{n \to \infty} \frac{10000}{n}}\right)^{-1} = 4 \left(1 + \color{red}{\left(10000 \lim_{n \to \infty} \frac{1}{n}\right)}\right)^{-1}}}

The limit of a quotient is the quotient of limits:

{ \pink{4 \left(1 + 10000 \color{red}{\lim_{n \to \infty} \frac{1}{n}}\right)^{-1} = 4 \left(1 + 10000 \color{red}{\frac{\lim_{n \to \infty} 1}{\lim_{n \to \infty} n}}\right)^{-1}}}

The limit of a constant is equal to the constant:

{4 \left(1 + \frac{10000 \color{red}{\lim_{n \to \infty} 1}}{\lim_{n \to \infty} n}\right)^{-1} = 4 \left(1 + \frac{10000 \color{red}{1}}{\lim_{n \to \infty} n}\right)^{-1}}

Constant divided by a very big number equals 0:

{4 \left(1 + 10000 \color{red}{1 \frac{1}{\lim_{n \to \infty} n}}\right)^{-1} = 4 \left(1 + 10000 \color{red}{\left(0\right)}\right)^{-1}}

Therefore,

 \bold{\lim_{n \to \infty} \frac{4 n^{2}}{n^{2} + 10000 n} = 4}

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given function is

 \red{\rm :\longmapsto\:\displaystyle\lim_{n \to  \infty} \frac{ 4{n}^{2} }{ {n}^{2}  + 10000n}}

If we substitute directly, the value of x, we get

\rm \:  =  \:\dfrac{ \infty }{ \infty }

which is indeterminant form.

So,

 \red{\rm :\longmapsto\:\displaystyle\lim_{n \to  \infty} \frac{ 4{n}^{2} }{ {n}^{2}  + 10000n}}

On dividing numerator and denominator by n^2, we get

\rm \:  =  \:\displaystyle\lim_{n \to  \infty } \frac{\dfrac{ {4n}^{2} }{ {n}^{2} } }{\dfrac{ {n}^{2}  + 10000n}{ {n}^{2} } }

\rm \:  =  \:\displaystyle\lim_{n \to  \infty } \frac{4}{\dfrac{ {n}^{2} }{ {n}^{2}}  + \dfrac{10000n}{ {n}^{2} } }

\rm \:  =  \:\displaystyle\lim_{n \to  \infty } \frac{4}{1  + \dfrac{10000}{ {n}} }

\rm \:  =  \:\dfrac{4}{1 +  \dfrac{10000}{ \infty } }

\rm \:  =  \:\dfrac{4}{1 + 0}

\rm \:  =  \:4

Hence,

 \red{\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{n \to  \infty} \frac{ 4{n}^{2} }{ {n}^{2}  + 10000n}} = 4 \: }}

Alternative Method :-

Given function is

 \red{\rm :\longmapsto\:\displaystyle\lim_{n \to  \infty} \frac{ 4{n}^{2} }{ {n}^{2}  + 10000n}}

On applying L Hospital Rule, we get

\rm \:  =  \:\displaystyle\lim_{n \to  \infty } \frac{\dfrac{d}{dn} {4n}^{2} }{\dfrac{d}{dn}( {n}^{2} + 10000n) }

We know,

\boxed{ \tt{ \: \dfrac{d}{dx} {x}^{n} \:  =  \:  {nx}^{n - 1} \: }}

So, using this, we get

\rm \:  =  \:\displaystyle\lim_{n \to  \infty } \frac{8n}{2n + 10000}

Again, applying L Hospital Rule, we get

\rm \:  =  \:\displaystyle\lim_{n \to  \infty } \frac{\dfrac{d}{dn}8n}{\dfrac{d}{dn}(2n + 10000)}

\rm \:  =  \:\displaystyle\lim_{n \to  \infty } \frac{8}{2 + 0}

\rm \:  =  \:\dfrac{8}{2}

\rm \:  =  \:4

Hence,

 \red{\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{n \to  \infty} \frac{ 4{n}^{2} }{ {n}^{2}  + 10000n}} = 4 \: }}

More to know

\boxed{ \tt{ \: \displaystyle\lim_{x \to  0 } \frac{sinx}{x} = 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to  0 } \frac{tanx}{x} = 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to  0 } \frac{log(1 + x)}{x} = 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to  0 } \frac{ {e}^{x}  - 1}{x} = 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to  0 } \frac{ {a}^{x}  - 1}{x} = loga \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to  0 } \frac{ 1 - cosx}{x} = 0 \: }}

Similar questions