Math, asked by archanapagar888, 3 months ago


{ \boxed{ \huge{ \frak{ \red{question}}}}}
please solve the question given in the attachment !!​

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Identities Used :-

 \red{ \boxed{ \sf{ \:  log( {x}^{y} ) = y log(x)  }}}

 \red{ \boxed{ \sf{ \:  log(xy)  =  log(x) +  log(y)  }}}

 \red{ \boxed{ \sf{ log(1)  = 0 \: }}}

 \red{ \boxed{ \sf{ \: (x + y)(x - y) =  {x}^{2} -  {y}^{2}  }}}

 \red{ \boxed{ \sf{ \: (x  -  y)( {x}^{2} + xy +  {y}^{2}) =  {x}^{3} -  {y}^{3}}}}

Let's solve the problem now!!!

Given that

\rm :\longmapsto\:\dfrac{logx}{b - c}  = \dfrac{logy}{c - a}  = \dfrac{logz}{a - b}

Let assume that

\rm :\longmapsto\:\dfrac{logx}{b - c}  = \dfrac{logy}{c - a}  = \dfrac{logz}{a - b} = k

\rm :\longmapsto\:logx = k(b - c) -  - (1)

\rm :\longmapsto\:logy = k(c - a) -  - (2)

\rm :\longmapsto\:logz = k(a - b) -  - (3)

Now,

Multiply equation (1) by a, we get

\rm :\longmapsto\:alogx = ak(b - c)

\rm :\longmapsto\:log {x}^{a}  = k(ab - ac) -  -  - (4)

Multiply equation (2) by b, we get

\rm :\longmapsto\:blogy = kb(c - a)

\rm :\longmapsto\:log {y}^{b}  = k(bc - ab) -  -  - (5)

Multiply equation (3) by c, we get

\rm :\longmapsto\:clogz = kc(a - b)

\rm :\longmapsto\:log {z}^{c}  = k(ac - bc) -  -  - (6)

On adding equation (4), (5) and (6), we get

\rm :\longmapsto\:log {x}^{a} + log {y}^{b} +  log {z}^{c}  = k(ab - ac + bc - ba + ac - bc)

\rm :\longmapsto\:log( {x}^{a}{y}^{b}{z}^{c} ) = 0

\rm :\longmapsto\:log( {x}^{a}{y}^{b}{z}^{c} ) = log1

\bf :\longmapsto\:{x}^{a}{y}^{b}{z}^{c}  = 1

Hence Proved (a)

Multiply equation (1) by (b + c), we get

\rm :\longmapsto\:(b + c)logx = (b + c)k(b - c)

\rm :\longmapsto\:log {x}^{b  + c}  = k( {b}^{2}  -  {c}^{2} ) -  -  - (7)

Multiply equation (2) by (c + a), we get

\rm :\longmapsto\:(c + a)logy = k(c + a)(c - a)

\rm :\longmapsto\:log {y}^{c  + a}  = k( {c}^{2}  -  {a}^{2} ) -  -  - (8)

Multiply equation (3) by a + b, we get

\rm :\longmapsto\:(a + b)logz = k(a + b)(a - b)

\rm :\longmapsto\:log {z}^{a + b}  = k( {a}^{2}  -  {b}^{2} ) -  -  - (9)

On adding equation (7), (8) and (9), we get

\rm :\longmapsto\:log {x}^{b + c} + log {y}^{c + a} +  log {z}^{a + b}  = k(0)

\rm :\longmapsto\:log ({x}^{b + c} {y}^{c + a}{z}^{a + b} ) = 0

\rm :\longmapsto\:log ({x}^{b + c} {y}^{c + a}{z}^{a + b} ) = log1

\bf :\longmapsto\: {x}^{b + c} {y}^{c + a}{z}^{a + b} =1

Hence, Proved (b)

Multiply equation (1) by b^2 + bc + c^2, we get

\rm :\longmapsto\:( {b}^{2}  + bc +  {c}^{2} )logx = ( {b}^{2} + bc +  {c}^{2}  )k(b - c)

\rm :\longmapsto\:log {x}^{ {b}^{2} +  bc +  {c}^{2} }  = k( {b}^{3}  -  {c}^{3} ) -  -  - (10)

Similarly,

\rm :\longmapsto\:log {y}^{ {c}^{2} +  ac +  {a}^{2} }  = k( {c}^{3}  -  {a}^{3} ) -  -  - (11)

Similarly,

\rm :\longmapsto\:log {z}^{ {a}^{2} +  ab +  {b}^{2} }  = k( {a}^{3}  -  {b}^{3} ) -  -  - (12)

On adding equation (10), (11) and (12), we get

\rm :\longmapsto\:log {x}^{ {b}^{2} + bc +  {c}^{2} }  + log {y}^{ {c}^{2} + ac +  {a}^{2}} +  log {z}^{ {a}^{2} +  ab +  {b}^{2} }  = k(0)

\rm :\longmapsto\:log ({x}^{ {b}^{2} + bc +  {c}^{2} }{y}^{ {c}^{2} + ac +  {a}^{2}}{z}^{ {a}^{2} +  ab +  {b}^{2} }) = 0

\rm :\longmapsto\:log ({x}^{ {b}^{2} + bc +  {c}^{2} }{y}^{ {c}^{2} + ac +  {a}^{2}}{z}^{ {a}^{2} +  ab +  {b}^{2} }) = log1

\bf :\longmapsto\:{x}^{ {b}^{2} + bc +  {c}^{2} }{y}^{ {c}^{2} + ac +  {a}^{2}}{z}^{ {a}^{2} +  ab +  {b}^{2} } = 1

Hence, Proved (c)

Similar questions