Math, asked by Mister360, 3 months ago

{\boxed {\LARGE{\mathcal {Question:-}}}}
The TSA of a right circular cylinder is \bf 701\dfrac {1}{4}cm^2..its LSA is \bf 528 cm^2

Find its volume ​

Answers

Answered by amankumaraman11
8

Given, A right circular cylinder, whose

 \tt{TSA  =  \bf 701\dfrac {1}{4} \:  \: cm^2} \\  \\ \tt LSA   =    \:  \: \bf 528  \: cm^2

We know, the formulas below ↓

 \text{TSA of cylinder}   \tt=2\pi r(r + h) \\  \\  \text{CSA of cylinder} \tt = 2\pi rh

Here,

  \implies\bf701 \frac{1}{4}  = 2\pi r(r + h)  \\  \\  \implies\bf \frac{2805}{4}  = 2\pi r(r + h)  \\  \\ \implies\bf \frac{2805}{4}  =   {2\pi r}^{2} + 2\pi rh \\  \\  \implies\bf \frac{2805}{4}  = 2\pi {r}^{2}  + 528 \\  \\ \implies\bf   \frac{2805 }{4}  - 528 =  2\pi {r}^{2} \\  \\ \implies\bf \frac{2805 - 2112}{8}  = \pi {r}^{2} \\  \\ \implies\bf   \frac{693}{8}  = \pi {r}^{2}  \\  \\ \implies\bf  \pi {r}^{2}  =  \frac{693}{8}  \:  {cm}^{2}

So,

 \implies\bf  {r}^{2}  =  \frac{693 \times 7}{8 \times 22}  \\  \\ \implies\bf   {r}^{2}  = 27.5625 \\  \\ \implies\bf  r =  \sqrt{27.5625}  \\ \implies\bf  r = 5.25 \: cm

Now,

\implies\bf    \frac{2805}{4}  = 2\pi {r}^{2} +  2\pi rh \\  \\  \implies\bf   \frac{2805}{4}  = 2 \bigg( \frac{693}{8}  \bigg) + 2\bigg(  \frac{22}{7}   \times 5.25 \bigg) \times h \\  \\\implies\bf h =  \frac{ \frac{2805}{4}  -  \frac{693}{4} }{2\big(  \frac{22}{7}   \times 5.25 \big) }  \\  \\ \implies\bf h =  \frac{ \frac{2112}{4} }{2(16.5)}  \\  \\ \implies\bf h =  \frac{2112}{8(16.5)}  \\  \\ \implies\bf h =  \frac{2112}{132}  = 16 \:  \: cm

Hence,

Volume of cylinder = π r²h

\implies\bf \frac{22}{7}  \times  {(5.25)}^{2}  \times 16 \\  \\ \implies\bf\frac{22}{7}  \times 5.25 \times 5.25 \times 16 \\  \\ \implies\bf 22 \times0.75 \times 5.25 \times 16 \\ \implies\bf138 6 \:  \:  {cm}^{3}

Similar questions