Math, asked by Mister360, 2 months ago

{\boxed {\LARGE{\mathfrak {solve\: it:-}}}}

\tt \left (\dfrac {x+1}{x-1}\right)^2-\left (\dfrac {x+1}{x-1}\right)=2

Answers

Answered by JohnRobinson
53

\tt \left (\dfrac {x+1}{x-1}\right)^2-\left (\dfrac {x+1}{x-1}\right)=2

Answer

 \frac{x + 1}{x - 1}  {}^{2}  - \frac{x + 1}{x - 1}  = 2

Answered by saanvigrover2007
20

\large \pmb{\sf{Question :}}

\tt \left (\dfrac {x+1}{x-1}\right)^2-\left (\dfrac {x+1}{x-1}\right)=2

━━━━━━━━━━━━━━━━━━━━━━━━━━

\large{\pmb{\sf{Final \: Solution:}}}

  \red \bigstar\color{green} \boxed{ \sf \purple{x = 0}} \\ \red \bigstar\color{green} \boxed{ \sf \purple{x = 3}}

━━━━━━━━━━━━━━━━━━━━━━━━━━

\large{\pmb{\sf{Step-by-step \; Explanation :}}}

 \sf{ :\leadsto\left (\dfrac {x+1}{x-1}\right)^2-\left (\dfrac {x+1}{x-1}\right)=2}

\sf{ :\leadsto\left (\dfrac {x+1}{x-1}\right)^2-\left (\dfrac {x+1}{x-1}\right) - 2 = 0}

 \footnotesize \boxed{ \green{ \sf{Let  \:  \orange t = \left(\dfrac {x+1}{x-1}\right)}}}

\sf{ :\leadsto {t}^{2}  - t - 2 = 0}

 \sf\therefore t = -1 \: \:   ;   \: \: t = 2

 \footnotesize \boxed{ \green{ \sf{Substituting  \: back  \:  \orange t = \left(\dfrac {x+1}{x-1}\right)}}}

  \sf :\leadsto \left(\dfrac {x+1}{x-1}\right) =  - 1\: \:   ;   \: \:\left(\dfrac {x+1}{x-1}\right) = 2

 \pink \bigstar \:  \color{maroon} \boxed{   \color{green}\sf :\leadsto x = 3\: \:   ;   \: \: x = 0}

━━━━━━━━━━━━━━━━━━━━━━━━━━

 \sf  \color{azure}\fcolorbox{pink}{black}{  \:    \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:   \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: @Saanvigrover2007 \:  \:  \:  \:  \:  \:  \:  \:  \:   \:    \:  \:  \:  \:  \:  \:  \:  \:  \: \: \:  \:}

Similar questions