Math, asked by Mister360, 3 months ago

{\boxed {\LARGE{\mathfrak {solve\:it:-}}}}

\tt \sqrt {2x+2\sqrt {2x+4}}=4

Answers

Answered by amansharma264
14

EXPLANATION.

⇒ √2x + 2√2x + 4 = 4.

As we know that,

Squaring on both sides of the equation, we get.

⇒ (√2x + 2√2x + 4)² = (4)².

⇒ 2x + 2√2x + 4 = 16.

Taking 2x in R.H.S sides of equation, we get.

⇒ 2√2x + 4 = (16 - 2x)

Again squaring on both sides of the equation, we get.

⇒ (2√2x + 4)² = (16 - 2x)².

⇒ 4(2x + 4) = (16 - 2x)².

As we know that,

Formula of :

⇒ (x - y)² = x² + y² - 2xy.

⇒ 8x + 16 = 256 + 4x² - 64x.

⇒ 4x² - 64x + 256 - 8x - 16 = 0.

⇒ 4x² - 72x + 240 = 0.

Taking 4 as common in equation, we get.

⇒ 4(x² - 18x + 60) = 0.

⇒ x² - 18x + 60 = 0.

⇒ D = Discriminant  Or b² - 4ac.

⇒ D = (-18)² - 4(1)(60).

⇒ D = 324 - 240.

⇒ D = 84.

⇒ α = - b + √D/2a.

⇒ α = -(-18) + √84/2.

⇒ α = 18 + √84/2.

⇒ α = 18 + 9.1/2.

⇒ α = 27.1/2.

⇒ α = 13.55.

⇒ β = -b - √D/2a.

⇒ β = -(-18) - √84/2.

⇒ β = 18 - 9.1/2.

⇒ β = 8.9/2.

⇒ β = 4.45.

                                                                                                                         

MORE INFORMATION.

Nature of the factors of the quadratic expression.

(1) = Real and different, if b² - 4ac > 0.

(2) = Rational and different, if b² - 4ac is a perfect square.

(3) = Real and equal, if b² - 4ac = 0.

(4) = If D < 0 Roots are imaginary and unequal or complex conjugate.

Answered by amankumaraman11
7

 \tt\sqrt {2x+2\sqrt {2x+4}}=4 \\  \\ \implies \rm 2x + 2 \sqrt{2x + 4}  = 16 \\ \\  \implies \rm 2 \sqrt{2x + 4}  = 16 - 2x \\  \\  \implies \rm2( \sqrt{2x + 4} ) = 2(8  -  x) \\   \\  \implies \rm \sqrt{2x + 4}  = 8 - x \\  \\  \implies \rm2x + 4 = 64 +  {x}^{2}  - 16x \\  \\  \implies \rm \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 0 =   {x}^{2}  - 18x + 60 \\  \\  \implies \rm {x}^{2}  - 18x + 60 = 0 \\   \tiny{ \text{comparing \: with \:  }  \rm{ax}^{2} + bx + c = 0 }\\

a = 1

b = - 18

c = 60

Now,

 \implies \rm x =  \frac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tiny \{ using \: quadratic \:  formula \} \\  \\  \implies \rm x =  \frac{ - ( - 18) \pm \sqrt{ {( - 18)}^{2} - 4(1)(60) } }{2(1)}  \\  \\  \implies \rm x =  \frac{18 \pm \sqrt{324 - 240} }{2}  \\  \\  \implies \rm x =  \frac{18 \pm \sqrt{84} }{2}  \\  \\  \implies \rm x =  \frac{2(9 \pm \sqrt{21}) }{2}  \\  \\  \implies \sf x = \red{ 9  \pm \sqrt{21} }

Similar questions