Answers
EXPLANATION.
⇒ √2x + 2√2x + 4 = 4.
As we know that,
Squaring on both sides of the equation, we get.
⇒ (√2x + 2√2x + 4)² = (4)².
⇒ 2x + 2√2x + 4 = 16.
Taking 2x in R.H.S sides of equation, we get.
⇒ 2√2x + 4 = (16 - 2x)
Again squaring on both sides of the equation, we get.
⇒ (2√2x + 4)² = (16 - 2x)².
⇒ 4(2x + 4) = (16 - 2x)².
As we know that,
Formula of :
⇒ (x - y)² = x² + y² - 2xy.
⇒ 8x + 16 = 256 + 4x² - 64x.
⇒ 4x² - 64x + 256 - 8x - 16 = 0.
⇒ 4x² - 72x + 240 = 0.
Taking 4 as common in equation, we get.
⇒ 4(x² - 18x + 60) = 0.
⇒ x² - 18x + 60 = 0.
⇒ D = Discriminant Or b² - 4ac.
⇒ D = (-18)² - 4(1)(60).
⇒ D = 324 - 240.
⇒ D = 84.
⇒ α = - b + √D/2a.
⇒ α = -(-18) + √84/2.
⇒ α = 18 + √84/2.
⇒ α = 18 + 9.1/2.
⇒ α = 27.1/2.
⇒ α = 13.55.
⇒ β = -b - √D/2a.
⇒ β = -(-18) - √84/2.
⇒ β = 18 - 9.1/2.
⇒ β = 8.9/2.
⇒ β = 4.45.
MORE INFORMATION.
Nature of the factors of the quadratic expression.
(1) = Real and different, if b² - 4ac > 0.
(2) = Rational and different, if b² - 4ac is a perfect square.
(3) = Real and equal, if b² - 4ac = 0.
(4) = If D < 0 Roots are imaginary and unequal or complex conjugate.
a = 1
b = - 18
c = 60
Now,