Math, asked by talpadadilip417, 1 day ago


   \boxed{\mathtt \red{\int \frac{(3 \sin \phi-2) \cos \phi}{5-\cos ^{2} \phi-4 \sin \phi} d \phi}}
Answer with proper explanation.

Don't spam.


→ Expecting answer from :

★ Moderators
★ Brainly stars and teacher
★ Others best users ​​

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm \frac{(3 \sin \phi-2) \cos \phi}{5-\cos ^{2} \phi-4 \sin \phi} d \phi

can be rewritten as

\rm \:  =  \: \displaystyle\int\rm \frac{(3 \sin \phi-2) \cos \phi}{5-(1 - \sin ^{2} \phi)-4 \sin \phi} d \phi

\rm \:  =  \: \displaystyle\int\rm \frac{(3 \sin \phi-2) \cos \phi}{5-1 + \sin ^{2} \phi-4 \sin \phi} d \phi

\rm \:  =  \: \displaystyle\int\rm \frac{(3 \sin \phi-2) \cos \phi}{4 + \sin ^{2} \phi-4 \sin \phi} d \phi

can be re-arranged as

\rm \:  =  \: \displaystyle\int\rm \frac{(3 \sin \phi-2) \cos \phi}{\sin ^{2} \phi-4 \sin \phi + 4} d \phi

To evaluate this integral, we use method of Substitution

So, Substitute

 \red{\rm :\longmapsto\:sin \phi \:  =  \: y}

 \red{\rm :\longmapsto\:cos\phi \:d \phi  =  \: dy}

So, on substituting the values, we get

\rm \:  =  \: \displaystyle\int\rm  \frac{(3y - 2)}{ {y}^{2} - 4y + 4 } \: dy

\rm \:  =  \: \displaystyle\int\rm  \frac{(3y - 2)}{ {(y - 2)}^{2}} \: dy

can be rewritten as

\rm \:  =  \: \displaystyle\int\rm  \frac{3(y  - 2 + 2)- 2}{ {(y - 2)}^{2}} \: dy

\rm \:  =  \: \displaystyle\int\rm  \frac{3(y  - 2) + 6- 2}{ {(y - 2)}^{2}} \: dy

\rm \:  =  \: \displaystyle\int\rm  \frac{3(y  - 2) + 4}{ {(y - 2)}^{2}} \: dy

\rm \:  =  \: 3\displaystyle\int\rm  \frac{1}{y - 2}dy + 4\displaystyle\int\rm  \frac{1}{ {(y - 2)}^{2} }

We know

\boxed{\tt{ \displaystyle\int\rm  \frac{1}{x}dx = log |x|  + c}}

and

\boxed{\tt{ \displaystyle\int\rm   {x}^{n}  dx=  \frac{ {x}^{n + 1} }{n + 1}   + c}}

So, using this, we get

\rm \:  =  \: 3 \: log |y - 2| + 4\displaystyle\int\rm  {(y - 2)}^{ - 2} \: dy

\rm \:  =  \: 3 \: log |y - 2| + 4\dfrac{ {(y - 2)}^{ - 2 + 1} }{ - 2 + 1}  + c

\rm \:  =  \: 3 \: log |y - 2| + 4\dfrac{ {(y - 2)}^{ - 1} }{ - 1}  + c

\rm \:  =  \: 3 \: log |y - 2|  - \dfrac{4}{y - 2}   + c

\rm \:  =  \: 3 \: log |sin \phi- 2|  - \dfrac{4}{sin \phi - 2}   + c

\rm \:  =  \: 3 \: log |sin \phi- 2|  -  4(cosec\phi  - 2)+ c

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions