Math, asked by talpadadilip417, 5 hours ago


  \boxed {\red{\mathtt{find \:  \:  \frac{dy}{dx}  \:  \: if \:   \: {x}^{y}  \cdot {y}^{x}  =   {x}^{x}} }}
Answer with proper explanation.

The correct respondent will get 100+ thanks.


Don't spam.


→ Expecting answer from :

★ Moderators
★ Brainly stars and teacher
★ Others best users ​​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\: {x}^{y}. {y}^{x} =  {x}^{x}

Taking log on both sides, we get

\rm :\longmapsto\: log[{x}^{y}. {y}^{x}]= log {x}^{x}

We know,

\boxed{\tt{ logxy = logx + logy}} \\  \\ and \\  \\\boxed{\tt{  \:  \:  log {x}^{y} = ylogx \:  \: }}

So, using these, we get

\rm :\longmapsto\:ylogx + xlogy = xlogx

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}\bigg[ylogx + xlogy\bigg] = \dfrac{d}{dx}xlogx

\rm :\longmapsto\:\dfrac{d}{dx}(ylogx) + \dfrac{d}{dx}(xlogy) = \dfrac{d}{dx}xlogx

We know,

\boxed{\tt{ \dfrac{d}{dx}uv \:  =  \: u\dfrac{d}{dx}v \:  +  \: v\dfrac{d}{dx}u \: }}

So, on applying this, we have

\rm :\longmapsto\:y\dfrac{d}{dx}logx + logx\dfrac{d}{dx}y + x\dfrac{d}{dx}logy + logy\dfrac{d}{dx}x = x\dfrac{d}{dx}logx + logx\dfrac{d}{dx}x

\rm :\longmapsto\:y\dfrac{1}{x}+ logx\dfrac{dy}{dx} + x\dfrac{1}{y}\dfrac{dy}{dx} + logy = x\dfrac{1}{x} + logx

\rm :\longmapsto\:\dfrac{y}{x}+ logx\dfrac{dy}{dx} + \dfrac{x}{y}\dfrac{dy}{dx} + logy = 1 + logx

\rm :\longmapsto\: logx\dfrac{dy}{dx} + \dfrac{x}{y}\dfrac{dy}{dx} = 1 + logx -  \dfrac{y}{x} - logy

\rm :\longmapsto\: \bigg[logx + \dfrac{x}{y}\bigg]\dfrac{dy}{dx} = \dfrac{x + xlogx - y - xlogy}{x}

\rm :\longmapsto\: \bigg[\dfrac{ylogx + x}{y}\bigg]\dfrac{dy}{dx} = \dfrac{x + xlogx - y - xlogy}{x}

\rm :\longmapsto\: \dfrac{dy}{dx} = \dfrac{y[x + xlogx - y - xlogy]}{x[ylogx + x]}

Hence,

\rm\implies \:\boxed{\tt{  \dfrac{dy}{dx} = \dfrac{y[x + xlogx - y - xlogy]}{x[ylogx + x]} }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions