Math, asked by talpadadilip417, 1 day ago

\boxed\scriptsize{\tt\pink{Differentiate \quad With \quad Respect \quad to\: X.}}
  \boxed{\tt \red{y=(\sin x)^{x}+\left(\frac{1}{x}\right)^{\cos x}}}
don't Spam.
answer with full explanation.

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:\tt {y=(\sin x)^{x}+\left(\dfrac{1}{x}\right)^{\cos x}}

Let assume that,

\rm :\longmapsto\:y = u + v

So that,

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{du}{dx} + \dfrac{dv}{dx} -   -  -  - (1)

where,

\rm :\longmapsto\:u =  {(sinx)}^{x}  -  -  - (2)

and

\rm :\longmapsto\:v =  {\bigg(\dfrac{1}{x} \bigg) }^{cosx}  -  -  - (3)

Now, Consider

\rm :\longmapsto\:u =  {(sinx)}^{x}

Taking log on both sides, we get

\rm :\longmapsto\:logu = log{(sinx)}^{x}

\rm :\longmapsto\:logu =x \:  log{(sinx)}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}logu =\dfrac{d}{dx}x \:  log{(sinx)}

We know,

\boxed{\tt{ \dfrac{d}{dx}logx =  \frac{1}{x}}} \\  \\ \boxed{\tt{ \dfrac{d}{dx}uv  = \: u\dfrac{d}{dx}v \:  +  \: v\dfrac{d}{dx}u}} \\

So, using this result, we get

\rm :\longmapsto\:\dfrac{1}{u}\dfrac{du}{dx} = x\dfrac{d}{dx}logsinx + logsinx\dfrac{d}{dx}x

\rm :\longmapsto\:\dfrac{1}{u}\dfrac{du}{dx} = x \times \dfrac{1}{sinx}\dfrac{d}{dx}sinx + logsinx \times 1

\rm :\longmapsto\:\dfrac{1}{u}\dfrac{du}{dx} = \dfrac{x}{sinx}(cosx) + logsinx

\rm :\longmapsto\:\dfrac{du}{dx} =  u(x \: cotx + logsinx)

\rm\implies \:\boxed{\tt{ \dfrac{du}{dx} = {(sinx)}^{x}(x \: cotx + logsinx)}} -  - (4)

Now, Consider

\rm :\longmapsto\:v =  {\bigg[\dfrac{1}{x} \bigg]}^{cosx}

can be rewritten as

\rm :\longmapsto\:v =  {x}^{ - cosx}

Taking log on both sides, we get

\rm :\longmapsto\:logv =  log{(x)}^{ - cosx}

\rm :\longmapsto\:logv = - cosx \:   log{(x)}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}logv = -\dfrac{d}{dx} cosx \:   log{(x)}

\rm :\longmapsto\:\dfrac{1}{v}\dfrac{dv}{dx} =  - \bigg(cosx\dfrac{d}{dx}logx + logx\dfrac{d}{dx}cosx\bigg)

\rm :\longmapsto\:\dfrac{1}{v}\dfrac{dv}{dx} =  - \bigg(cosx \times \dfrac{1}{x} + logx( - sinx)\bigg)

\rm :\longmapsto\:\dfrac{dv}{dx} =  - v\bigg[\dfrac{cosx}{x}  - sinx \: logx\bigg]

\rm\implies \:\boxed{\tt{ \dfrac{dv}{dx} =  -  {(x)}^{ -cosx} \bigg[\dfrac{cosx}{x}  - sinx \: logx\bigg]}} -  - (5)

On substituting the values of equation (4) and (5), in equation (1), we get

 \red{\sf :\longmapsto\:\dfrac{dy}{dx} = {(sinx)}^{x}(xcotx + logsinx)-  {(x)}^{- cosx} \bigg[\dfrac{cosx}{x}  - sinx logx\bigg]}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

FORMULA USED

\boxed{\tt{ log {x}^{y} \:  =  \: y \: logx \: }}

\boxed{\tt{ \dfrac{d}{dx}sinx  = cosx}}

\boxed{\tt{ \dfrac{d}{dx}cosx  \:  =  -  \: sinx}}

\boxed{\tt{ \dfrac{d}{dx}x = 1}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions