Math, asked by TheUnknownLily, 4 months ago

\boxed{\text{Answer this} \sf{☞︎︎︎}}
ㅤㅤㅤ
★ㅤ\sf{\dfrac{\dfrac{3}{2} log 3 + log \sqrt{8} + log \sqrt{125} }{log 2 + log 3 + log 5}}

Answers

Answered by AaronGrey
3

Answer:

3/2

Step-by-step explanation:

{\dfrac{\dfrac{3}{2} log 3 + log \sqrt{8} + log \sqrt{125} }{log 2 + log 3 + log 5}}

Can be written as :

 \dfrac{ log ({3}^{ \frac{3}{2} } \times {2}^{ \frac{3}{2} } \times {5}^{ \frac{3}{2} })}{ log(2 \times 3 \times 5) }  \\   \dfrac{ log( {30}^{ \frac{3}{2} } ) }{ log(30) }  \\  log_{30}( {30}^{ \frac{3}{2} } )  =  \dfrac{3}{2}

Using laws:

 log(x)  +  log(y)  =  log(xy)

 log( {x}^{y} )  = y log(x)

 \dfrac{ log(x) }{ log(y) }  =  log_{y}(x)

Similar questions