Math, asked by Anonymous, 1 year ago

\boxed{\textbf{\large{HELLO}}}
x =  \frac{ {sin}^{3}t }{ \sqrt{cos2t}}\\
y =  \frac{cos {}^{3} t}{ \sqrt{cos2t} }  \\
Find dy /dx ​

Answers

Answered by rishu6845
3

Answer:

plzz give me brainliest ans and plzzzz follow me

Attachments:
Answered by Anonymous
25

Answer:

\large \text{$-\cot 3 t .$}

Step-by-step explanation:

Given :

\large \text{$x=\dfrac{\sin^3t}{\sqrt{\cos2t}}$}

\large \text{$y=\dfrac{\cos^3t}{\sqrt{\cos2t}}$}

We have to find \large \text{$\dfrac{dy}{dx}$}

Here apply both side d t

\large \text{$\implies\dfrac{dy}{dx}\times\dfrac{dt}{dt}$}\\\\\\\large \text{$\implies\dfrac{dy}{dt}\times\dfrac{dt}{dx}$}\\\\\\\large \text{$\implies\dfrac{\dfrac{dy}{dt}}{\dfrac{dt}{dx}}$}

First let us find d y / d t

\displaystyle \text{$\dfrac{dy}{dx} =\dfrac{d}{dt}\left ({\dfrac{\sin^3t}{\sqrt{\cos2t}}}\right)$}

Applying division rule of differentation here

\displaystyle \text{$\dfrac{d}{dx}\left(\frac{fx}{gx}\right)=\dfrac{gx\dfrac{d}{dt}\left( fx \right)-fx\dfrac{d}{dt}\left(gx\right)}{gx^2} $}

\displaystyle \text{$\dfrac{d}{dx}\left(\frac{cos^3t}{\sqrt{cos2t}}\right)=\dfrac{\sqrt{cos2t} \ \dfrac{d}{dt}\left( cos^3t \right)-cos^3t \ \dfrac{d}{dt}\left(\sqrt{cos2t}\right)}{(\sqrt{cos2t})^2} $}\\\\\\\large \text{On solving this we get}\\\\\\ \displaystyle \text{$\dfrac{d}{dx}\left(\frac{cos^3t}{\sqrt{cos2t}}\right)=\dfrac{\cos^2t(-3\sin t .\cos2 t + \cos t . \sin 2t)}{(cos2t)^{3/2}} $}

Now for d x / d t

\displaystyle \text{$\dfrac{d}{dx}\left(\frac{\sin^3t}{\sqrt{\cos2t}}\right)=\dfrac{\sqrt{\cos2t} \ \dfrac{d}{dt}\left( \sin^3t \right)-\sin^3t \ \dfrac{d}{dt}\left(\sqrt{\cos2t}\right)}{(\sqrt{\cos2t})^2} $}\\\\\\\large \text{On solving this we get}\\\\\\ \displaystyle \text{$\dfrac{d}{dx}\left(\frac{\sin^3t}{\sqrt{cos2t}}\right)=\dfrac{\sin^2t(3\cos t .\cos2 t + \sin t . \sin 2t)}{(cos2t)^{3/2}}$}

\displaystyle \text{Now for $\dfrac{\dfrac{dy}{dt} }{\dfrac{dx}{dt}}$}

\displaystyle \text{$\dfrac{\dfrac{dy}{dt} }{\dfrac{dx}{dt} }=\frac{\dfrac{\cos^2t(-3\sin t .\cos2 t + \cos t . \sin 2t)}{(cos2t)^{3/2}} }{\dfrac{\sin^2t(3\cos t .\cos2 t + \sin t . \sin 2t)}{(cos2t)^{3/2}}} $}\\\\\\ \displaystyle \text{$\dfrac{dy}{dx}=\frac{ \cos^2t(-3\sin t .\cos2 t + \cos t . \sin 2t}{\sin^2t(3\cos t .\cos2 t + \sin t . \sin 2t)}$}\\\\\\\large \text{On solving this we get}\\\\\\\displaystyle \text{$\dfrac{dy}{dx}=-\cot 3t$}

Thus we get answer.

Similar questions