Math, asked by saryka, 2 months ago

⠀⠀
\;\;\;\;\;\;\;\;\;\bullet\;\;\;\;\;\sf{\dfrac{x^2-x-6}{x^2+6x}\geqslant0}
⠀⠀
Find the integrals of 'x' by using wavy curve method.​

Answers

Answered by mathdude500
126

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\dfrac{ {x}^{2}  - x - 6}{ {x}^{2}  + 6x} \geqslant 0

\rm :\longmapsto\:\dfrac{ {x}^{2} - 3x + 2x - 6 }{x(x + 6)} \geqslant 0

\rm :\longmapsto\:\dfrac{x(x - 3) + 2(x - 3)}{x(x + 6)}  \geqslant 0

\rm :\longmapsto\:\dfrac{(x - 3)(x + 2)}{x(x + 6)}  \geqslant 0 \:  \: and \: x \ne \: 0, \:  - 6

\begin{gathered}\boxed{\begin{array}{c|c} \sf interval & \bf sign \: of \: \dfrac{(x - 3)(x + 2)}{x(x + 6)} \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf x <  - 6 & \sf  + ve \\ \\ \sf  - 6 < x \leqslant  - 2 & \sf  - ve \\ \\ \sf  - 2 \leqslant x < 0 & \sf  + ve\\ \\ \sf 0 < x \leqslant 3 & \sf  - ve\\ \\ \sf x \geqslant 3 & \sf  + ve \end{array}} \\ \end{gathered}

\bf\implies \:x \in \: ( -  \infty , - 6)  \: \cup \: [ - 2,0) \:  \cup \: [3, \infty )

Basic Concept :-

  • Factorize the given expression.

  • Get the values of x, by equating every factor to 0.

  • Plot these points on the number line and assign the sign.

  • The requured interval is the solution set.
Attachments:
Similar questions