Answers
Answer:
Solution :
Given log₁₀2 = 0.3010 , log₁₀5 = 0.6990
Now, log₁₀50 - log₁₀40
= log₁₀(5² × 2) - log₁₀(2³ × 5)
= (log₁₀5² + log₁₀2) - (log₁₀2³ + log₁₀5)
= 2log₁₀5 + log₁₀2 - 3log₁₀2 - log₁₀5
= log₁₀5 - 2log₁₀2
= 0.6990 - 2(0.3010)
= 0.6990 - 0.6020
= 0.0970
➞ log₁₀50 - log₁₀40 = 0.970 , which is the required value correct to 3 significant figures.
Explanation:
Pressure exerted by water on the bottom of a deep dam(Hydrostatic pressure) is 120000 Pa.
Step-by-step Explanation :
GivEn :
Density of water, ϱ = 10³kg/m³
Height = 12 m
g = 10m/s²
To find :
Pressure exerted by water on the bottom of a deep dam(Hydrostatic pressure) =
SoluTion :
We know that,
\begin{gathered}\begin{gathered}\sf \longrightarrow \: Hydrostatic \: pressure = \rho \times g \times h \\ \\\end{gathered}\end{gathered}
⟶Hydrostaticpressure=ρ×g×h
Substituting the values,
\begin{gathered}\begin{gathered}\sf \longrightarrow \: Hydrostatic \: pressure = {10}^{3} \times 10 \times 12 \\ \\\end{gathered}\end{gathered}
⟶Hydrostaticpressure=10
3
×10×12
\begin{gathered}\begin{gathered}\sf \longrightarrow \: Hydrostatic \: pressure = {10}^{4} \times 12 \\ \\\end{gathered}\end{gathered}
⟶Hydrostaticpressure=10
4
×12
\begin{gathered}\begin{gathered}\sf \longrightarrow \: Hydrostatic \: pressure = 10000 \times 12 \\ \\\end{gathered}\end{gathered}
⟶Hydrostaticpressure=10000×12
\begin{gathered}\begin{gathered}\sf \therefore { \blue{Hydrostatic \: pressure = 120000 \: Pa}} \\ \\\end{gathered}\end{gathered}
∴Hydrostaticpressure=120000Pa
Hence, Pressure exerted by water on the bottom of a deep dam(Hydrostatic pressure) is 120000 Pa.