Math, asked by Miathegreat, 4 days ago


chapter
Principle of Mathematical Induction.
excercise \: 4.1


question
prove the following by using the principal of mathematical induction of all n € N:

1)
1 + 3 + 3 {}^{2}  +  -  - 3n {} - 1 = \binom{3n - 1}{2}






Answers

Answered by mathdude500
31

Appropriate Question :-

Prove by Principal of Mathematical Induction

\rm \: 1 + 3 +  {3}^{2} +  -  -  -  +  {3}^{n - 1}  =  \dfrac{ {3}^{n}  - 1}{2}  \\

\large\underline{\sf{Solution-}}

To prove that,

\rm \: 1 + 3 +  {3}^{2} +  -  -  -  +  {3}^{n - 1}  =  \dfrac{ {3}^{n}  - 1}{2}  \\

Let assume that

\rm \: P(n) : \rm \: 1 + 3 +  {3}^{2} +  -  -  -  +  {3}^{n - 1}  =  \dfrac{ {3}^{n}  - 1}{2}  \\

Step :- 1 For n = 1

\rm \: P(1) : \rm \: 1 =  \dfrac{ {3}^{1}  - 1}{2}  \\

\rm \: P(1) : \rm \: 1 =  \dfrac{ 3  - 1}{2}  \\

\rm \: P(1) : \rm \: 1 =  \dfrac{2}{2}  \\

\rm \: P(1) : \rm \: 1 =  1  \\

\rm\implies \:\rm \: P(1)  \: is \: true \: for \:  n=  1 \\

Step : - 2 For n = k, Assume that P(n) is true, where k is some natural number.

\rm \: P(k) : 1 + 3 +  {3}^{2} +  -  -  -  +  {3}^{k - 1}  =  \dfrac{ {3}^{k}  - 1}{2}  \\

Step :- 3 For n = k + 1, we have to prove that P(n) is true.

\rm \: P(k + 1) : 1 + 3 +  {3}^{2} +  -  -  -  +  {3}^{k - 1} +  {3}^{k}  =  \dfrac{ {3}^{k + 1}  - 1}{2}  \\

Now, Consider LHS

\rm \: 1 + 3 +  {3}^{2} +  -  -  -  +  {3}^{k - 1} +  {3}^{k}   \\

\rm \: =  \:\dfrac{ {3}^{k}  - 1}{2} +  {3}^{k} \\

\rm \: =  \:\dfrac{ {3}^{k}  - 1 + 2. {3}^{k} }{2}  \\

\rm \: =  \:\dfrac{ {3}^{k}(1 + 2)  - 1 }{2}  \\

\rm \: =  \:\dfrac{ {3}^{k}.3  - 1 }{2}  \\

\rm \: =  \:\dfrac{ {3}^{k + 1}  - 1 }{2}  \\

Hence,

\rm\implies \:\rm \: P(n)  \: is \: true \: for \:  n=  k  + 1 \\

Hence, By Principal of Mathematical Induction,

\rm \: 1 + 3 +  {3}^{2} +  -  -  -  +  {3}^{n - 1}  =  \dfrac{ {3}^{n}  - 1}{2}  \\


BrainlyPopularman: Nice
Answered by phelper27
14

SOLUTION :

  • please check the attached file
Attachments:
Similar questions