Math, asked by TbiaSupreme, 1 year ago

[tex] Check,Whether \frac{1}{11}\left[\begin{array}{ccc}-1&8&α\\1&-19&14\\2&6&-5\end{array}\right] is and inverse of A=\left[\begin{array}{ccc}1&2&5\\3&1&1\\4&2&1\end{array}\right],if so, then α=.....

(a) -3

(b) 2

(c) -5

(d) not exists. [/tex]


AnswerStation: are u a hacker

Answers

Answered by luciianorenato
1

Answer:

In order to the first matrix be the inverse of the second, we need \alpha = -3.

Step-by-step explanation:

\frac{1}{11}\left[\begin{array}{ccc}-1&8&\alpha\\1&-19&14\\2&6&-5\end{array}\right] \times \left[\begin{array}{ccc}1&2&5\\3&1&1\\4&2&1\end{array}\right]  = \left[\begin{array}{ccc}\frac{1}{11}(4\alpha+23)&\frac{1}{11}(2\alpha+6)&\frac{1}{11}(\alpha+3)\\0&1&0\\0&0&1\end{array}\right]

Then we need

\frac{1}{11}(4\alpha+23) = 1 \Rightarrow \alpha = -3

In this case, we have

\frac{1}{11}(2\alpha+6) = \frac{1}{11}(\alpha+3) = 0

As wished. So the correct option is (a)

Similar questions