Math, asked by morankhiraj, 2 months ago

{\circ  \: \text {If}   \: \: a  \: \text{cos} \theta - b \text{sin} \theta = c, \text{then show that}} \\  {a  \:  \: \text{sin}  \: \theta + b \:  \text{cos}  \: \theta = \pm  \:  \sqrt{{a² + b² + c²}}} \:

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

a \cos( \theta)  -  \sin( \theta) = c \\

 \implies \: (a \cos( \theta)  - b \sin( \theta) )^{2} =  {c}^{2}  \\

 \implies \: a ^{2}  \cos^{2} ( \theta)   + b^{2}   \sin^{2} ( \theta) - 2ab \sin( \theta)  \cos( \theta)   =  {c}^{2}  \\

 \implies \: a ^{2} (1 -  \sin^{2} ( \theta)  ) + b^{2} (1 -   \cos^{2} ( \theta) )- 2ab \sin( \theta)  \cos( \theta)   =  {c}^{2}  \\

 \implies \: a ^{2} -   {a}^{2} \sin^{2} ( \theta)   + b^{2} - {b}^{2}    \cos^{2} ( \theta) - 2ab \sin( \theta)  \cos( \theta)   =  {c}^{2}  \\

 \implies \:  -   {a}^{2} \sin^{2} ( \theta)   -  b^{2}    \cos^{2} ( \theta) - 2ab \sin( \theta)  \cos( \theta)   =  {c}^{2} -  {a}^{2}  -  {b}^{2}   \\

 \implies \:  - (  {a}^{2} \sin^{2} ( \theta)    +   b^{2}    \cos^{2} ( \theta)  +  2ab \sin( \theta)  \cos( \theta) )  =  - ( {a}^{2}  +  {b}^{2}  -  {c}^{2} )  \\

 \implies \:   (  {a}^{2} \sin^{2} ( \theta)    +   b^{2}    \cos^{2} ( \theta)  +  2ab \sin( \theta)  \cos( \theta) )  =   ( {a}^{2}  +  {b}^{2}  -  {c}^{2} )  \\

 \implies \:   (  a \sin( \theta)    +   b   \cos ( \theta) )^{2}   =   ( {a}^{2}  +  {b}^{2}  -  {c}^{2} )  \\

 \implies \:    a \sin( \theta)    +   b   \cos ( \theta)    =  \pm \sqrt{  {a}^{2}  +  {b}^{2}  -  {c}^{2} }  \\

Similar questions