Math, asked by Anonymous, 1 day ago

  \color{blue} \displaystyle \sf \int \bigg( \sum_{n = 1} ^{ \infty }   \bigg( \frac{d}{dx}  \bigg(  \lim_{h \to0} \bigg( \frac{ \frac{1}{(x +  {h}^{2} )}  -  \frac{1}{ {x}^{2} } }{h}  \bigg) \bigg) \bigg)^{n}  \bigg) \: dx

Answers

Answered by senboni123456
14

Step-by-step explanation:

We have,

\displaystyle \sf \int \left[ \sum_{n = 1} ^{ \infty } \left \{ \frac{d}{dx} \bigg( \lim_{h \to0} \bigg( \frac{ \frac{1}{ \left(x +h \right)^{2} } - \frac{1}{ {x}^{2} } }{h} \bigg) \bigg) \right \}^{n} \right]  dx

\displaystyle =  \sf \int \left[ \sum_{n = 1} ^{ \infty } \left \{ \frac{d}{dx} \bigg( \lim_{h \to0} \bigg( \frac{  {x}^{2} -    \left(x  +  h \right)^{2} }{h {x}^{2} \left(x +  h  \right)^{2} } \bigg) \bigg) \right \}^{n} \right]  dx \\

\displaystyle =  \sf \int \left[ \sum_{n = 1} ^{ \infty } \left \{ \frac{d}{dx} \bigg( \lim_{h \to0} \bigg( \frac{    \left(x - x  -   h \right) \left( x + x + h\right) }{h {x}^{2} \left(x +  h  \right)^{2} } \bigg) \bigg) \right \}^{n} \right]  dx \\

\displaystyle =  \sf \int \left[ \sum_{n = 1} ^{ \infty } \left \{ \frac{d}{dx} \bigg( \lim_{h \to0} \bigg( \frac{   -   h \left( 2 x + h\right) }{h {x}^{2} \left(x +  h  \right)^{2} } \bigg) \bigg) \right \}^{n} \right]  dx \\

\displaystyle =  \sf \int \left[ \sum_{n = 1} ^{ \infty } \left \{ \frac{d}{dx} \bigg( \lim_{h \to0} \bigg( \frac{   -    \left( 2 x + h\right) }{ {x}^{2} \left(x +  h  \right)^{2} } \bigg) \bigg) \right \}^{n} \right]  dx \\

\displaystyle =  \sf \int \left[ \sum_{n = 1} ^{ \infty } \left \{ \frac{d}{dx} \bigg(  \bigg( \frac{   -    2 x }{ {x}^{2} \cdot {x}^{2} } \bigg) \bigg) \right \}^{n} \right]  dx \\

\displaystyle =  \sf \int \left[ \sum_{n = 1} ^{ \infty } \left \{ \frac{d}{dx} \bigg(   \frac{   -    2  }{ {x}^{3} } \bigg) \right \}^{n} \right]  dx \\

\displaystyle =  \sf \int \left[ \sum_{n = 1} ^{ \infty } \left \{   \frac{   (-  2)( - 3)  }{ {x}^{4} }\right \}^{n} \right]  dx \\

\displaystyle =  \sf \int \left[6 \sum_{n = 1} ^{ \infty }  \frac{  1 }{ {x}^{4n} }\right]  dx \\

\displaystyle =  \sf6 \int \left [   \frac{  1 }{ {x}^{4} } +\frac{  1 }{ {x}^{8} }  +\frac{  1 }{ {x}^{12} }  +\frac{  1 }{ {x}^{16} }  +  \cdots\right]  dx \\

\displaystyle =  \sf6 \int\frac{  1 }{ {x}^{4} } \left [   1 +\frac{  1 }{ {x}^{4}}  +\frac{  1 }{ {x}^{8} }  +\frac{  1 }{ {x}^{12} }  +  \cdots\right]  dx \\

\displaystyle =  \sf6 \int\frac{  1 }{ {x}^{4} } \left [    \dfrac{1 }{1 -\dfrac{  1 }{ {x}^{4}} }\right]  dx \\

\displaystyle =  \sf6 \int\frac{   1 }{ {x}^{4} } \left [    \dfrac{ {x}^{4} }{{x}^{4} - 1 }\right]  dx \\

\displaystyle =  \sf6 \int   \dfrac{ 1 }{{x}^{4} - 1 }\  dx \\

\displaystyle =  \sf6 \int   \dfrac{ 1 }{ \left({x}^{2} - 1 \right) \left({x}^{2}  + 1 \right) }\  dx \\

\displaystyle =  \sf3 \int   \dfrac{ 2 }{ \left({x}^{2} - 1 \right) \left({x}^{2}  + 1 \right) }\  dx \\

\displaystyle =  \sf3 \int   \dfrac{ \left({x}^{2}  +  1 \right) -\left({x}^{2} - 1 \right)  }{ \left({x}^{2} - 1 \right) \left({x}^{2}  + 1 \right) }\  dx \\

\displaystyle =  \sf3 \int   \dfrac{ \left({x}^{2}  +  1 \right)   }{ \left({x}^{2} - 1 \right) \left({x}^{2}  + 1 \right) }  dx   - 3 \int   \dfrac{ \left({x}^{2}  -   1 \right)   }{ \left({x}^{2} - 1 \right) \left({x}^{2}  + 1 \right) }  dx \\

\displaystyle =  \sf3 \int   \dfrac{ dx  }{ {x}^{2} - 1  }     - 3 \int   \dfrac{ dx   }{ {x}^{2}  + 1 }   \\

\displaystyle =  \sf3  \cdot \dfrac{1}{2}\ln \left|    \dfrac{ x - 1  }{ x + 1  }  \right|     - 3 { tan}^{ - 1}(x)  +C   \\

\displaystyle =  \sf3\ln  \left( \sqrt{    \dfrac{ x - 1  }{ x + 1  }} \right)   - 3 { tan}^{ - 1}(x)  +C   \\

Answered by IamOnePunchMan
2

Answer:

Step-by-step explanation:

We have,

\displaystyle \sf \int \left[ \sum_{n = 1} ^{ \infty } \left \{ \frac{d}{dx} \bigg( \lim_{h \to0} \bigg( \frac{ \frac{1}{ \left(x +h \right)^{2} } - \frac{1}{ {x}^{2} } }{h} \bigg) \bigg) \right \}^{n} \right]  dx

\displaystyle =  \sf \int \left[ \sum_{n = 1} ^{ \infty } \left \{ \frac{d}{dx} \bigg( \lim_{h \to0} \bigg( \frac{  {x}^{2} -    \left(x  +  h \right)^{2} }{h {x}^{2} \left(x +  h  \right)^{2} } \bigg) \bigg) \right \}^{n} \right]  dx \\

\displaystyle =  \sf \int \left[ \sum_{n = 1} ^{ \infty } \left \{ \frac{d}{dx} \bigg( \lim_{h \to0} \bigg( \frac{    \left(x - x  -   h \right) \left( x + x + h\right) }{h {x}^{2} \left(x +  h  \right)^{2} } \bigg) \bigg) \right \}^{n} \right]  dx \\

\displaystyle =  \sf \int \left[ \sum_{n = 1} ^{ \infty } \left \{ \frac{d}{dx} \bigg( \lim_{h \to0} \bigg( \frac{   -   h \left( 2 x + h\right) }{h {x}^{2} \left(x +  h  \right)^{2} } \bigg) \bigg) \right \}^{n} \right]  dx \\

\displaystyle =  \sf \int \left[ \sum_{n = 1} ^{ \infty } \left \{ \frac{d}{dx} \bigg( \lim_{h \to0} \bigg( \frac{   -    \left( 2 x + h\right) }{ {x}^{2} \left(x +  h  \right)^{2} } \bigg) \bigg) \right \}^{n} \right]  dx \\

\displaystyle =  \sf \int \left[ \sum_{n = 1} ^{ \infty } \left \{ \frac{d}{dx} \bigg(  \bigg( \frac{   -    2 x }{ {x}^{2} \cdot {x}^{2} } \bigg) \bigg) \right \}^{n} \right]  dx \\

\displaystyle =  \sf \int \left[ \sum_{n = 1} ^{ \infty } \left \{ \frac{d}{dx} \bigg(   \frac{   -    2  }{ {x}^{3} } \bigg) \right \}^{n} \right]  dx \\

\displaystyle =  \sf \int \left[ \sum_{n = 1} ^{ \infty } \left \{   \frac{   (-  2)( - 3)  }{ {x}^{4} }\right \}^{n} \right]  dx \\

\displaystyle =  \sf \int \left[6 \sum_{n = 1} ^{ \infty }  \frac{  1 }{ {x}^{4n} }\right]  dx \\

\displaystyle =  \sf6 \int \left [   \frac{  1 }{ {x}^{4} } +\frac{  1 }{ {x}^{8} }  +\frac{  1 }{ {x}^{12} }  +\frac{  1 }{ {x}^{16} }  +  \cdots\right]  dx \\

\displaystyle =  \sf6 \int\frac{  1 }{ {x}^{4} } \left [   1 +\frac{  1 }{ {x}^{4}}  +\frac{  1 }{ {x}^{8} }  +\frac{  1 }{ {x}^{12} }  +  \cdots\right]  dx \\

\displaystyle =  \sf6 \int\frac{  1 }{ {x}^{4} } \left [    \dfrac{1 }{1 -\dfrac{  1 }{ {x}^{4}} }\right]  dx \\

\displaystyle =  \sf6 \int\frac{   1 }{ {x}^{4} } \left [    \dfrac{ {x}^{4} }{{x}^{4} - 1 }\right]  dx \\

\displaystyle =  \sf6 \int   \dfrac{ 1 }{{x}^{4} - 1 }\  dx \\

\displaystyle =  \sf6 \int   \dfrac{ 1 }{ \left({x}^{2} - 1 \right) \left({x}^{2}  + 1 \right) }\  dx \\

\displaystyle =  \sf3 \int   \dfrac{ 2 }{ \left({x}^{2} - 1 \right) \left({x}^{2}  + 1 \right) }\  dx \\

\displaystyle =  \sf3 \int   \dfrac{ \left({x}^{2}  +  1 \right) -\left({x}^{2} - 1 \right)  }{ \left({x}^{2} - 1 \right) \left({x}^{2}  + 1 \right) }\  dx \\

\displaystyle =  \sf3 \int   \dfrac{ \left({x}^{2}  +  1 \right)   }{ \left({x}^{2} - 1 \right) \left({x}^{2}  + 1 \right) }  dx   - 3 \int   \dfrac{ \left({x}^{2}  -   1 \right)   }{ \left({x}^{2} - 1 \right) \left({x}^{2}  + 1 \right) }  dx \\

\displaystyle =  \sf3 \int   \dfrac{ dx  }{ {x}^{2} - 1  }     - 3 \int   \dfrac{ dx   }{ {x}^{2}  + 1 }   \\

\displaystyle =  \sf3  \cdot \dfrac{1}{2}\ln \left|    \dfrac{ x - 1  }{ x + 1  }  \right|     - 3 { tan}^{ - 1}(x)  +C   \\

\displaystyle =  \sf3\ln  \left( \sqrt{    \dfrac{ x - 1  }{ x + 1  }} \right)   - 3 { tan}^{ - 1}(x)  +C   \\

Similar questions