#Thank_uh❤️"
Answers
Answered by
8
Hope it helps you ❣️☑️☑️☑️
Attachments:
Answered by
7
Answer:
2(sin 6 α+cos 6 α)−3(sin 4 α−cos 4 α)+1=0
Rewrite the expression by applying the distributive rule
a³+b³=(a+b)(a²−ab+b²)
2(sin² a+ cos² a)(sin⁴ a − sin² acos²b+ cos² a)−3(sin⁴ a +cos⁴ a)+1=0
Put the value of pythagorean identity
sin²(x)+cos²(x)=1
, to get:
2(1)(sin⁴ a−sin² a cos² b+cos² a)−3(sin⁴ a+cos⁴ a)+1=0
2 sin⁴ a − 2sin² a cos² b+2cos⁴ a−3 sin⁴ a−3cos⁴ a+1=0
Simplify:
−sin⁴ (a) − 2sin² a cos² b−cos⁴ a+1=0
−(sin⁴ a+2sin² a cos² b+cos⁴ a)+1=0
−(sin² a+cos² a)2+1=0
Put the value of pythagorean identity
sin² (x)+cos² (x)=1 , to get:−1+1=0
0 = 0
HENCE, PROVED
Similar questions