Math, asked by sajan6491, 2 days ago

 \color{blue}{\rm{ \displaystyle \lim _{ \rm \: x \to1} \frac{ \displaystyle\int_{0} ^{( \rm \: x - 1) ^{2} } \rm t \cos tdt}{ \rm(x - 1) \sin(x - 1)} } }

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \displaystyle \lim _{ \rm \: x \to1} \frac{ \displaystyle\int_{0} ^{( \rm \: x - 1) ^{2} } \rm t \cos tdt}{ \rm(x - 1) \sin(x - 1)}  \\

If we substitute directly x = 1, we get indeterminant form.

So, above expression can be rewritten as

\rm \: =  \:  \displaystyle \lim _{ \rm \: x \to1} \frac{ \displaystyle\int_{0} ^{( \rm \: x - 1) ^{2} } \rm t \cos tdt}{ \rm(x - 1) ^{2} \times \dfrac{sin(x - 1)}{(x - 1)}  }  \\

We know,

\boxed{ \rm{ \:\displaystyle \lim _{ \rm \: x \to0}\rm \:  \frac{sinx}{x} \:  =  \: 1 \: }} \\

So, using this identity, we get

\rm \: =  \:  \displaystyle \lim _{ \rm \: x \to1} \frac{ \displaystyle\int_{0} ^{( \rm \: x - 1) ^{2} } \rm t \cos tdt}{ \rm(x - 1) ^{2}}  \\

On applying L Hospital Rule, we get

\rm \: =  \:  \displaystyle \lim _{ \rm \: x \to1} \frac{ \dfrac{d}{dx} \displaystyle\int_{0} ^{( \rm \: x - 1) ^{2} } \rm t \cos tdt}{\dfrac{d}{dx} \rm(x - 1) ^{2}}  \\

So, on differentiating numerator using Leibnitz rule, we get

\rm \: =  \:  \displaystyle \lim _{ \rm \: x \to1} \frac{  \rm  {(x - 1)}^{2}  \cos  {(x - 1)}^{2}\dfrac{d}{dx} {(x - 1)}^{2}  }{2(x - 1)}  \\

\rm \: =  \:  \displaystyle \lim _{ \rm \: x \to1} \frac{  \rm  {(x - 1)} [\cos  {(x - 1)}^{2}] \:  \times  \: 2(x - 1)}{2}  \\

\rm \:  =  \: \displaystyle \lim _{ \rm \: x \to1} \: \rm \:  {(x - 1)}^{2} \: cos {(x - 1)}^{2}  \\

\rm \:  =  \:   {(1 - 1)}^{2} \: cos {(1 - 1)}^{2}  \\

\rm \:  =  \: 0 \times cos0 \\

\rm \:  =  \: 0 \times 1 \\

\rm \:  =  \: 0 \\

Hence,

\color{green}\rm\implies \:\boxed{ \rm{ \:\rm \: \displaystyle \lim _{ \rm \: x \to1} \frac{ \displaystyle\int_{0} ^{( \rm \: x - 1) ^{2} } \rm t \cos tdt}{ \rm(x - 1) \sin(x - 1)}  = 0 \:  \: }} \\

\rule{190pt}{2pt}

Formulae Used :-

Leibnitz Rule :-

\rm \: \dfrac{d}{dx}\displaystyle\int_{a} ^{\rm b}f(x,t)dt =  \displaystyle\int_{a} ^{\rm b} \:  \frac{\partial }{\partial x} f(x,t)dt + \dfrac{db}{dx}[f(x,b)] - \dfrac{da}{dx}[f(x,a)] \\

\boxed{ \rm{ \:\dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1} \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {x}^{n}\\ \\ \sf  {nx}^{n - 1}  & \sf  {e}^{x} \end{array}} \\ \end{gathered}

Similar questions