Math, asked by sajan6491, 4 days ago

 \color{green} \displaystyle  \rm\lim_{x \to1} \frac{ {x}^{100}  - 2x + 1}{ {x}^{50}  - 2x + 1}

Answers

Answered by mathdude500
11

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \displaystyle \rm\lim_{x \to1} \:  \frac{ {x}^{100} - 2x + 1}{ {x}^{50} - 2x + 1} \\

If we substitute directly x = 1, we get

\rm \:  =  \: \dfrac{1 - 2 + 1}{1 - 2 + 1}  \\

\rm \:  =  \: \dfrac{2 - 2}{2 - 2}  \\

\rm \:  =  \: \dfrac{0}{0}  \\

which is indeterminant form.

So, Consider again

\rm \: \displaystyle \rm\lim_{x \to1} \:  \frac{ {x}^{100} - 2x + 1}{ {x}^{50} - 2x + 1}

can be further rewritten as

\rm \:  =  \: \displaystyle \rm\lim_{x \to1} \:  \frac{ {x}^{100} - 1 + 1 - 2x + 1}{ {x}^{50} - 1 + 1 - 2x + 1}

\rm \:  =  \: \displaystyle \rm\lim_{x \to1} \:  \frac{ {x}^{100} - 1 - 2x + 2}{ {x}^{50} - 1 - 2x + 2} \\

\rm \:  =  \: \displaystyle \rm\lim_{x \to1} \:  \frac{( {x}^{100} - 1) - 2(x - 1)}{ ({x}^{50} - 1) - 2(x - 1)} \\

Divide numerator and denominator by x - 1, we get

\rm \:  =  \: \displaystyle \rm\lim_{x \to1} \: \dfrac{\dfrac{ {x}^{100}  - 1}{x - 1}  - 2}{\dfrac{ {x}^{50}  - 1}{x - 1}  - 2}

We know,

\boxed{ \rm{ \:\displaystyle \rm\lim_{x  \: \to \: a} \:  \frac{ {x}^{n} -  {a}^{n}}{x - a} \:  =  \:  {na}^{n - 1} \: }} \\

\rm \:  =  \: \dfrac{ {100(1)}^{100 - 1}  - 2}{ {50(1)}^{50 - 1}  - 2}  \\

\rm \:  =  \: \dfrac{ {100(1)}^{99}  - 2}{ {50(1)}^{49}  - 2}  \\

\rm \:  =  \: \dfrac{100  - 2}{ 50  - 2}  \\

\rm \:  =  \: \dfrac{98}{ 48}  \\

\rm \:  =  \: \dfrac{49}{24}  \\

Hence,

\rm\implies \:\displaystyle \rm\lim_{x \to1} \frac{ {x}^{100} - 2x + 1}{ {x}^{50} - 2x + 1} =  \: \dfrac{49}{24}  \\

\rule{190pt}{2pt}

Alternative Method :-

Given expression is

\rm \: \displaystyle \rm\lim_{x \to1} \frac{ {x}^{100} - 2x + 1}{ {x}^{50} - 2x + 1} \\

On substituting directly the value of x = 1, we get

\rm \:  =  \: \dfrac{1 - 2 + 1}{1 - 2 + 1}  \\

\rm \:  =  \: \dfrac{2 - 2}{2 - 2}  \\

\rm \:  =  \: \dfrac{0}{0}  \\

which is indeterminant form.

So, Consider again

\rm \: \displaystyle \rm\lim_{x \to1} \frac{ {x}^{100} - 2x + 1}{ {x}^{50} - 2x + 1} \\

On applying L Hospital Rule, we get

\rm \:  =  \: \displaystyle \rm\lim_{x \to1} \frac{\dfrac{d}{dx}( {x}^{100} - 2x + 1)}{ \dfrac{d}{dx}({x}^{50} - 2x + 1)} \\

\rm \:  =  \: \displaystyle \rm\lim_{x \to1} \:  \frac{100 {x}^{99} - 2 + 0 }{ {50x}^{49}  - 2 + 0}  \\

\rm \:  =  \: \displaystyle \rm\lim_{x \to1} \:  \frac{100 {x}^{99} - 2}{ {50x}^{49}  - 2}  \\

\rm \:  =  \: \dfrac{100  - 2}{ 50  - 2}  \\

\rm \:  =  \: \dfrac{98}{ 48}  \\

\rm \:  =  \: \dfrac{49}{24}  \\

Hence,

 \color{green}\rm\implies \:\displaystyle \rm\lim_{x \to1} \frac{ {x}^{100} - 2x + 1}{ {x}^{50} - 2x + 1} =  \: \dfrac{49}{24}  \\

Remark :-

\boxed{ \rm{ \:\dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}}} ,\:  \: \boxed{ \rm{ \:\dfrac{d}{dx}k = 0}} ,\:  \: \boxed{ \rm{ \:\dfrac{d}{dx}x = 1}} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{sinx}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{tanx}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{log(1 + x)}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{ {e}^{x}  - 1}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{ {a}^{x}  - 1}{x} = loga}\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions