Math, asked by sajan6491, 18 days ago

\color{purple}{ \boxed{  \boxed{ \begin{matrix}\rm \red{Given  \: that:-} \\  \rm \pink{ \frac{d}{dx}  ({e}^{x} ) =  {e}^{x} } \\  \rm \color{blue}then \: prove \: that \\  \color{green} \rm \frac{d}{dx} ({a}^x  ) =  {a}^{x}\ln(a)  \end{matrix}}}}

Answers

Answered by mathdude500
27

\large\underline{\sf{Solution-}}

As it is given that,

\rm \: \dfrac{d}{dx} ({e}^{x} ) = {e}^{x}  \\

Now, Consider

\rm \: \dfrac{d}{dx}{a}^{x} \\

can be rewritten as

\rm \:  =  \: \dfrac{d}{dx} {e}^{log{a}^{x}}  \\

can be further rewritten as

\rm \:  =  \: \dfrac{d}{dx} {e}^{ \: x \: loga}  \\

\rm \:  =  \: {e}^{ \: x \: loga}\dfrac{d}{dx}(x \: loga)  \\

\rm \:  =  \: {e}^{log{a}^{x}} \: loga \: \dfrac{d}{dx}(x)  \\

\rm \:  =  \: {a}^{x} \: loga \:  \times  \: 1 \\

\rm \:  =  \: {a}^{x} \: loga \:  \\

\color{green}\rm\implies \:\boxed{ \rm{ \:\dfrac{d}{dx}{a}^{x} =  \: {a}^{x} \: loga \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {x}^{n}\\ \\ \sf  {nx}^{n - 1}  & \sf  {e}^{x} \end{array}} \\ \end{gathered}

Similar questions