Math, asked by Anonymous, 1 day ago

  \color{red}\displaystyle \rm \int_{0}^{ \infty }    \sum_{n = 0}^{ \infty }   \frac{( - 1 {)}^{n}   \: {x}^{2n + 1} }{ {2}^{n}  \cdot n!}  \sum_{n = 0}^{ \infty }  \frac{ {x}^{2n} \: dx }{ {2}^{2n} \cdot(n! {)}^{2}  }

Answers

Answered by sajan6491
11

 \small\color{red}\displaystyle \rm \int_{0}^{ \infty } \sum_{n = 0}^{ \infty } \frac{( - 1 {)}^{n} \: {x}^{2n + 1} }{ {2}^{n} \cdot n!} \sum_{n = 0}^{ \infty } \frac{ {x}^{2n} \: dx }{ {2}^{2n} \cdot(n! {)}^{2} }

 \small\color{red}\displaystyle \rm \int_{0}^{ \infty } x {e}^{ \frac{ -  {x}^{2} }{2} }  \sum_{n = 0}^{ \infty } \frac{ {x}^{2n} }{ {2}^{2n} (n! {)}^{2} } \: dx

 \small\color{red}\displaystyle \rm \int_{0}^{ \infty } x {e}^{  - u}  \sum_{n = 0}^{ \infty } \frac{ {(2u)}^{n} }{ {2}^{2n} (n! {)}^{2} } \:  \frac{du}{x}

 \small\color{red}\displaystyle \rm \int_{0}^{ \infty } {e}^{  - u}  \sum_{n = 0}^{ \infty } \frac{ {u}^{n} }{ {2}^{n} (n! {)}^{2} } \:  du

 \small\color{red}\displaystyle \rm   \sum_{n = 0}^{ \infty } \frac{ 1 }{ {2}^{n} (n! {)}^{2} }  \int _{0}^{ \infty } {e}^{ - u} \cdot {u}^{n}   \:  du

 \small\color{red}\displaystyle \rm   \sum_{n = 0}^{ \infty } \frac{ 1 }{ {2}^{n} (n! {)}^{2} }   \: n!

 \small\color{red}\displaystyle \rm   \sum_{n = 0}^{ \infty } \frac{ 1 }{ {2}^{n}  \cdot n! {} }

 \small\color{red}\displaystyle \rm   \sum_{n = 0}^{ \infty } \frac{ ( \frac{1}{2} {)}^{n}  }{    n! {} }

 \rm \red{ {e}^{ \frac{1}{2}  }  =  \sqrt{e} }

Similar questions