Math, asked by Anonymous, 21 days ago

 \color{red} \displaystyle \rm \int \frac{1}{x}  \prod^{ \infty }_{i = 1} \left( 1 -  \tan^{2}  \bigg (  \frac{x}{ {2}^{i} } \bigg)\right)  \: dx

Answers

Answered by senboni123456
6

Step-by-step explanation:

We have,

\displaystyle \rm \int \frac{1}{x} \prod^{ \infty }_{i = 1} \left \{1 - \tan^{2} \left( \frac{x}{ {2}^{i} } \right)\right \}\: dx

\displaystyle \rm{ = \int \frac{1}{x} \prod^{ \infty }_{i = 1} \left \{ \dfrac{\cos^{2} \left( \dfrac{x}{ {2}^{i} } \right) - \sin^{2} \left( \dfrac{x}{ {2}^{i} } \right)}{\cos^{2} \left( \dfrac{x}{ {2}^{i} } \right)}\right \}\: dx}

\displaystyle \rm{ = \int \frac{1}{x} \prod^{ \infty }_{i = 1} \left \{ \dfrac{\cos \left( 2 \cdot\dfrac{x}{ {2}^{i} } \right) }{\cos^{2} \left( \dfrac{x}{ {2}^{i} } \right)}\right \}\: dx}

\displaystyle \rm{ = \int \frac{1}{x} \prod^{ \infty }_{i = 1} \left \{ \dfrac{\cos \left( \dfrac{x}{ {2}^{i - 1} } \right) }{\cos^{2} \left( \dfrac{x}{ {2}^{i} } \right)}\right \}\: dx}

\displaystyle \rm{ = \int \frac{1}{x} \cdot \lim_{n \to \infty} \dfrac{\cos \left( \dfrac{x}{ {2}^{1- 1} } \right) \cdot\cos \left( \dfrac{x}{ {2}^{2- 1} } \right)  \cdot\cos \left( \dfrac{x}{ {2}^{3- 1} } \right) \cdots\cos \left( \dfrac{x}{ {2}^{n- 1} } \right)}{\cos^{2} \left( \dfrac{x}{ {2}^{1} } \right) \cdot\cos^{2} \left( \dfrac{x}{ {2}^{2} } \right) \cdot\cos^{2} \left( \dfrac{x}{ {2}^{3} } \right) \cdots\cos^{2} \left( \dfrac{x}{ {2}^{n} } \right)}\: dx}

\displaystyle \rm{ = \int \frac{1}{x} \cdot \lim_{n \to \infty}\dfrac{\cos \left( \dfrac{x}{  {2}^{0} } \right) \cdot\cos \left( \dfrac{x}{ {2}^{1} } \right)  \cdot\cos \left( \dfrac{x}{ {2}^{2} } \right) \cdots\cos \left( \dfrac{x}{ {2}^{n- 1} } \right)}{ \left \{\cos \left( \dfrac{x}{ {2}^{1} } \right) \cdot\cos\left( \dfrac{x}{ {2}^{2} } \right) \cdot\cos \left( \dfrac{x}{ {2}^{3} } \right) \cdots\cos\left( \dfrac{x}{ {2}^{n} } \right) \right \}^{2} }\: dx}

\displaystyle \rm{ = \int \frac{1}{x} \cdot \lim_{n \to \infty}\dfrac{\cos \left( \dfrac{x}{  {2}^{n - 1} } \right) \cdot\cos \left( 2 \cdot\dfrac{x}{ {2}^{n - 1} } \right)  \cdot\cos \left( {2}^{2}   \cdot\dfrac{x}{ {2}^{n - 1} } \right) \cdots\cos \left(  {2}^{n - 1}  \cdot\dfrac{x}{ {2}^{n- 1} } \right)}{ \left \{\cos \left( \dfrac{x}{ {2}^{n} } \right) \cdot\cos\left(2 \cdot \dfrac{x}{ {2}^{n} } \right) \cdot\cos \left( {2}^{2}  \cdot \dfrac{x}{ {2}^{n} } \right) \cdots\cos\left( {2}^{n - 1} \cdot\dfrac{x}{ {2}^{n} } \right) \right \}^{2} }\: dx}

\displaystyle \rm{ = \int \frac{1}{x} \cdot\lim_{n \to \infty} \dfrac{  \dfrac{\sin \left(  {2}^{n}  \cdot \dfrac{x}{ {2}^{n - 1} } \right)}{ {2}^{n}  \cdot\sin \left(   \dfrac{x}{ {2}^{n - 1} } \right)}}{ \left \{  \dfrac{ \sin \left(  {2}^{n}  \cdot \dfrac{x}{ {2}^{n} }\right)  }{ {2}^{n}  \cdot\sin \left(  \dfrac{x}{ {2}^{n} }\right)} \right \}^{2} }\: dx}

\displaystyle \rm{ = \int \frac{1}{x} \cdot \lim_{n \to \infty}\dfrac{  \dfrac{\sin( 2x )}{ {2}^{n}  \cdot\sin \left(   \dfrac{x}{ {2}^{n - 1} } \right)}}{ \dfrac{ \sin^{2} (x )  }{ {2}^{2n}  \cdot\sin^{2}  \left(  \dfrac{x}{ {2}^{n} }\right)}}\: dx}

\displaystyle \rm{ = \int \frac{1}{x} \cdot \lim_{n \to \infty}\dfrac{ {2}^{2n}  \cdot\sin^{2}  \left(  \dfrac{x}{ {2}^{n} }\right) \cdot\sin( 2x )}{ {2}^{n}  \cdot\sin \left(   \dfrac{x}{ {2}^{n - 1} } \right) \cdot\sin^{2} (x )  }\: dx}

\displaystyle \rm{ = \int \frac{1}{x} \cdot \lim_{n \to \infty}\dfrac{ {2}^{2n}  \cdot\sin^{2}  \left(  \dfrac{x}{ {2}^{n} }\right) \cdot2\sin( x ) \cos(x) }{ {2}^{n}  \cdot\sin \left(   \dfrac{x}{ {2}^{n - 1} } \right) \cdot\sin^{2} (x )  }\: dx}

\displaystyle \rm{ = \int \lim_{n \to \infty} \dfrac{ x \cdot {2}^{2n}  \cdot\sin^{2}  \left(  \dfrac{x}{ {2}^{n} }\right) \cdot \cos(x) }{ x^{2}  \cdot{2}^{n - 1}  \cdot\sin \left(   \dfrac{x}{ {2}^{n - 1} } \right) \cdot\sin (x )  }\: dx}

\displaystyle \rm{ = \int \lim_{n \to \infty}  \dfrac{ \dfrac{x}{ {2}^{ n - 1} } }{\sin \left(   \dfrac{x}{ {2}^{n - 1} } \right)}  \cdot\lim_{n \to \infty}  \dfrac{ \dfrac{x^{2} }{ {2}^{ 2n } } }{\sin^{2}  \left(   \dfrac{x}{ {2}^{n } } \right)} \cdot\dfrac{  \cos(x) }{ \sin (x )  }\: dx}

\displaystyle \rm{ = \int 1  \cdot1 \cdot\dfrac{  \cos(x) }{ \sin (x )  }\: dx}

\displaystyle \rm{ = \int \cot(x) \: dx}

\displaystyle \rm{ = \ln | \sin(x)|   + c}

Similar questions