Math, asked by Anonymous, 1 day ago

 \color{red} \displaystyle \rm   \lim_{x \to \infty }   \log \bigg(  \sum \limits _{n = 0}^{x}  \int_{0}^{x}   \frac{ {y}^{n - 1}  {e}^{ -  \frac{y}{e} } }{e((n - 1)! {)}^{2} }  dy\bigg )

Answers

Answered by sajan6491
3

\color{red} \displaystyle \rm \lim_{x \to \infty } \log \bigg[ \sum \limits _{n = 0}^{x} \int_{0}^{x} \frac{ {y}^{n - 1} {e}^{ - \frac{y}{e} } }{e((n - 1)! {)}^{2} } dy\bigg]

\color{red} \displaystyle \rm \lim_{x \to \infty } \log \bigg[ \sum \limits _{n = 0}^{x} \int_{0}^{ \frac{x}{e} } \frac{  {e}^{n - 1}  {u}^{n - 1}  {e}^{ - u}  }{ e((n - 1)! {)}^{2} }  \: e  \: du\bigg]

\color{red} \displaystyle \rm \lim_{x \to \infty } \log \bigg[ \sum \limits _{n = 0}^{x}   \frac{  {e}^{n - 1}    }{((n - 1)! {)}^{2} }  \int_{0}^{ \frac{x}{e}} {e}^{ - u}  \:  {u}^{n - 1} \: du\bigg]

\color{red} \displaystyle \rm \lim_{x \to \infty } \log \bigg[ \sum \limits _{n = 0}^{x}   \frac{  {e}^{n - 1}    }{((n - 1)! {)}^{2} }    \: (n - 1)!\bigg]

\color{red} \displaystyle \rm \lim_{x \to \infty } \log \bigg[ \sum \limits _{n = 0}^{x}   \frac{  {e}^{n - 1}    }{(n - 1)! {}^{} }    \bigg]

\color{red} \displaystyle \rm \lim_{x \to \infty } \log \bigg[ \sum \limits _{n = 1}^{x}   \frac{  {e}^{n }    }{n! {}^{} }    \bigg]

\color{red} \displaystyle \rm \lim_{x \to \infty }    log( {e}^{e} )  = e

Similar questions