Math, asked by Anonymous, 1 day ago

 \color{red} \displaystyle  \rm\sum_{n = 0}^{ \infty }  \frac{ \Gamma(n + 1) \Gamma(m + 1)}{(n +  1) \Gamma(n + m + 2)}  =   {\Psi }^{ (1) } (m + 1)

Answers

Answered by sajan6491
12

\color{red} \displaystyle \rm\sum_{n = 0}^{ \infty } \frac{ \Gamma(n + 1) \Gamma(m + 1)}{(n + 1) \Gamma(n + m + 2)}

\color{red} \displaystyle \rm\sum_{n = 0}^{ \infty } \frac{  \Beta (n + 1,m + 1)}{n + 1}

\color{red} \displaystyle \rm\sum_{n = 0}^{ \infty } \frac{1}{n + 1}    \int_{0}^{1}  {t}^{n} ( 1 -  {t})^{m}  \: dt

\color{red} \displaystyle \rm \int_{0}^{1}   ( 1 -  {t})^{m} \sum_{n = 0}^{ \infty} \frac{ {t}^{n} }{n + 1}  \: dt

\color{red} \displaystyle \rm \int_{0}^{1}   ( 1 -  {t})^{m} \sum_{n = 1}^{ \infty} \frac{ {t}^{n- 1} }{n  }  \: dt

\color{red} \displaystyle \rm  - \int_{0}^{1}  \frac{  ( 1 -  {t})^{m}   \ln(1 - t) }{t}   \: dt

\color{red} \displaystyle \rm  - \int_{0}^{1}  \frac{   {t}^{m}   \ln(t) }{1 - t}   \: dt

 \rm \red{ {\Psi }^{ (1) } (m + 1)}

Similar questions