Math, asked by sajan6491, 4 days ago

 \color{red}\rm If \: A=  \left[\begin{array}{ccc}  \rm{2}^x &0&0\\ \rm0&  \rm{2}^{ {2}^{x} } &0\\0&0& \rm {2}^{ {2}^{ {2}^{x} } } \end{array}\right] , \: then \: find \\   \color{blue}\displaystyle \rm \int det(A)dx

Answers

Answered by senboni123456
13

Step-by-step explanation:

We have,

A= \left[\begin{array}{ccc}{2}^x &0&0\\ 0& {2}^{ {2}^{x} } &0\\  0& 0&  {2}^{ {2}^{ {2}^{x} } } \end{array}\right]

Now,

 \det(A)=   \left| \begin{array}{ccc}{2}^x &0&0\\ 0& {2}^{ {2}^{x} } &0\\  0& 0&  {2}^{ {2}^{ {2}^{x} } } \end{array}\right|

 \implies \det(A)=   {2}^{x}  \left| \begin{array}{cc} {2}^{ {2}^{x} } &0\\  0&  {2}^{ {2}^{ {2}^{x} } } \end{array}\right|

 \implies \det(A)=   {2}^{x}  \left(  {2}^{ {2}^{x} }  \cdot {2}^{ {2}^{ {2}^{x} } }  - 0\right)  \\

 \implies \det(A)=   {2}^{x}  \cdot  {2}^{ {2}^{x} }  \cdot {2}^{ {2}^{ {2}^{x} } }   \\

Now,

 \displaystyle \int \det(A) \: dx

 \displaystyle  = \int {2}^{x}  \cdot  {2}^{ {2}^{x} }  \cdot {2}^{ {2}^{ {2}^{x} } }  \: dx

 \displaystyle  = \int  {2}^{ {2}^{ {2}^{x} } }  \cdot{2}^{ {2}^{x} } \cdot {2}^{x}  \: dx

 \bf{Put \:  \:  {2}^{ {2}^{ {2}^{x} } } = t }

 \bf{ \mapsto \:  \: {2}^{ {2}^{ {2}^{x} } }  \cdot ln(2) \cdot {2}^{ {2}^{x} }  \cdot  ln(2)    \cdot {2}^{x} \cdot  ln(2) dx  =d t }

 \bf{ \mapsto \:  \: {2}^{ {2}^{ {2}^{x} } }  \cdot {2}^{ {2}^{x} }   \cdot {2}^{x} \cdot \big \{  ln(2) \big \} ^{3}  dx  =d t }

 \bf{ \mapsto \:  \: {2}^{ {2}^{ {2}^{x} } }  \cdot {2}^{ {2}^{x} }   \cdot {2}^{x}  dx  = \dfrac{d t}{\big \{  ln(2) \big \} ^{3} } }

So,

 \displaystyle  = \int   \dfrac{dt}{ \big \{    \ln(2) \big \}^{3} }

 =  \dfrac{t}{ \big \{    \ln(2) \big \}^{3} } + c

 =  \dfrac{ {2}^{ {2}^{ {2}^{x} } } }{ \big \{    \ln(2) \big \}^{3} } + c

Similar questions