Math, asked by XxLUCYxX, 16 days ago

  \color{red} \sf \: Calculate \: the \: mean \: and \: the \: median \: for \: the \: following \: distribution:  -  \\  \\   \color{lightblue} \begin{array}{ | c |  c|c |  c | c |c | c |c |}  \hline \\  \bf \: Number \:  \:  \:  \:  & \sf \:5 & \sf \:10& \sf \:15& \sf \:20& \sf \:25& \sf \:30 & \sf \:35  \\ \hline \\  \bf \: Frequency& \sf 1& \sf 2& \sf 5& \sf 6& \sf 3& \sf 2& \sf 1 \\  \hline\end{array}

 \sf Note:\:The\:required\: mean \: is \: 19.5 \: and \: median \: is \: 20.

Answers

Answered by mathdude500
13

\large\underline{\sf{Solution-}}

Calculations of mean using Direct Method

\begin{array}{ | c | c|c | c | c |c | c |c |} \hline \\ \bf \: Number (x_i) \: & \sf \:5 & \sf \:10& \sf \:15& \sf \:20& \sf \:25& \sf \:30 & \sf \:35 \\ \hline \\ \bf \: Frequency(f_i)& \sf 1& \sf 2& \sf 5& \sf 6& \sf 3& \sf 2& \sf 1 \\ \hline\\ \bf \: f_ix_i& \sf 5& \sf 20& \sf 75& \sf 120& \sf 75& \sf 60& \sf 35 \\ \hline\end{array} \\

So, from above calculations, we concluded that

\rm \:  \sum \: f_i \:  =  \: 20 \\

\rm \:  \sum \: f_i x_i\:  =  \: 390 \\

We know, Mean using Direct Method is given by

\rm \: Mean \:  =  \: \dfrac{ \sum \: f_ix_i}{ \sum \: f_i}  \\

So, on substituting the values, we get

\rm \: Mean = \dfrac{390}{20} \\

\rm\implies \:\boxed{ \rm{ \:Mean \:  =  \: 19.5 \:  \: }} \\

Now, Calculations of Median

\begin{array}{ | c | c|c | c | c |c | c |c |} \hline \\ \bf \: Number (x_i) \: & \sf \:5 & \sf \:10& \sf \:15& \sf \:20& \sf \:25& \sf \:30 & \sf \:35 \\ \hline \\ \bf \: Frequency(f_i)& \sf 1& \sf 2& \sf 5& \sf 6& \sf 3& \sf 2& \sf 1 \\ \hline\\ \bf \: c.f.& \sf 1& \sf 3& \sf 8& \sf 14& \sf 17& \sf 19& \sf 20 \\ \hline\end{array} \\

\rm \:  N \:  =  \: \sum \: f_i \:  =  \: 20 \\

\rm\implies \:\dfrac{N}{2}  = \dfrac{20}{2}  = 10

Now, In cumulative frequency, the frequency just greater than 10 is 14 and corresponding value of x is 20.

\rm\implies \:\boxed{ \rm{ \:Median \:  =  \: 20 \:  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

1. Mean using Short Cut Method

\boxed{ \rm{ \:\rm \: Mean \:  =  \:A +  \dfrac{ \sum \: f_id_i}{ \sum \: f_i}  \:  \: }} \\

2. Mean using Step Deviation Method

\boxed{ \rm{ \:\rm \: Mean \:  =  \:A +  \dfrac{ \sum \: f_iu_i}{ \sum \: f_i} \times  h \:  \: }} \\

Similar questions