Math, asked by Anonymous, 21 days ago

 \color{red}\underline{\underline{\huge\bf  Question :-}}

The radius of the Incircle of a triangle is 4 cm and the segments into which one side is divided by the point of contact are 6 cm and 8 cm. Determine the other two sides of the triangle.

Topic : Circles
Class : 10th

Thankieww <3 ​

Attachments:

Answers

Answered by llGlowingStarll
37

 \huge\mathfrak\pink{Answer}

BF=BD=6cm

[length of tangent from external point are equal]

CE=CD=8cm

[length of tangent from external point are equal]

Let AF=AE=x

[length of tangent from external point are equal ]

Now,

AreaofΔABC=AreaofΔAOB+AreaofΔBOC+AreaofΔCOA

= 1/2×4(6+x)+ 21×4(14)+ 21×4(8+x)

= 1/2×4(28+2x)

=4(14+x)

Also, area of ΔABC by Heron's formula

S= 14+6+x+8+x/2=14+x

Area of ΔABC= root(14+x)(8)(6)x

So, 4(14+x)= root48x(14+x)

16(14+x)^2 =48x(14+x)

14+x=3x

2x=14⇒x=7

So, AB=6+x=6+7=13cm

AC=8+x=8+7=15cm

Sum = 13+15=28cm

 \\  \\

Answered by Anonymous
19

Step-by-step explanation:

Given:

A circle with centre O

Let triangle AB circumscribe the circle

with OD = radius = 4 cm

CD = 6 cm

BD = 8 cm

To find:

AB AC and OB

Let AC, AB intersect circle at E & F respectively

Solution

lengths of tangents drawn from external point are equal

Hence,

CE = CD = 6 cm

BF = BD = 8 cm

AE = AF = x

Now, our three sides are

CB=CD+DB=6+8=14 cm

AC=AE+EC=(x+6)cm

AB=AF+FC=(x+8)cm

Now, we find Area of ∆ ABC using Herons formula Area of triangle

 \pmb{ \sqrt {(s(s - a)(s - b)(s - c)}}

Here,

AC=a=(x+6)cm

AB=b=(x+8)cm

BC=c=6+8=14 cm

 \bf \: s \:  =  \frac{a + b + c}{2}  \\  \bf \:  =  \frac{(x + 6) + (x + 8) + 14}{2}  \\  \bf \:  =  \frac{2x + 28}{2}  \\  \bf \:  =  \frac{2(x + 14)}{2}  = x + 14

 \pmb{Area  \:  \Delta  \: ABC =  \sqrt{(s(s - a) (s - b) (s - c)}}

Putting values

 \bf=\sqrt {(x+14)(x+14)-(x+6)(x+14)-(x+8) \: (x+14-14)} \\  \bf \: =  \sqrt{ (x+14)(x+14-x-6)(x+14-x-8)(x+14-14)} \\

\bf= \sqrt{ (x+14)(8)(6)(x)} \\  \bf \: =  \sqrt{ (x+14)(48)(x)} \\  \bf \: =  \sqrt{ (x+14)(48x)}  \\  \bf \: =  \sqrt {x(48x)+14(48x) } \\  \bf=  \sqrt {48x^ 2 +672x}

 \pmb{ \: Area \:  \Delta \: A  B C =  \sqrt{(48x ^ 2 + 672x)}}

Join OE & OF

Here,

OD = OF = OE = radius =4 cm

Also,

we know that tangent is perpendicular to the radius

So,

 \pmb{ \: OD  \perp BC , OF  \perp AB  \: and \: OE  \perp AC}

Also,

 \bf \: Area  \: of  \Delta \: A  B C = Are \:  triangle  \: AOC+Area  \Delta \: A O B + \:  Area   \:  \Delta B O  C

We find Area ∆ AOC , Area ∆ AOB & Area ∆ BOC

Area ∆ AOC

 \bf=  \frac{1}{2} \times Base \times Height  \\ \bf =  \frac{1}{2}   \times  OE  \times  AC \\ \bf =  \frac{1}{2}   \times 4 \times (x+6) \\ \bf =2(x+6)\\ \bf =2x+12

Area ∆ AOB

 \bf=  \frac{1}{2}  \times Base \times  Height \\ \bf =   \frac{1}{2} \times  OF \times  AB \\  \bf=  \frac{1}{2}  \times 4 \times (x+8) \\  \bf=2(x+8) \\  \bf=2x+16

Area ∆BOC

 \bf=  \frac{1}{2}  \times  Base \times  Height \\ \bf =  \frac{1}{2} \times  OD \times  BC \\ \bf =  \frac{1}{2}  \times 4 \times 14 \\ \bf =2 \times 14 \\  \bf=28 \\

Now,

Area ∆ AOC , Area ∆ AOB & Area ∆ BOC

Putting values

 \bf \sqrt{(48x ^ 2 + 672x) = (2x + 12) + (2x + 16) + 28)} \:  \\  \bf \sqrt{(48x ^ 2 + 672x) = 4x + 56 }

Squaring both sides

  \bf \sqrt{(48x ^ 2 + 672x)^ 2 = (4x + 56) ^ 2} \\ \bf48x ^ 2 + 672x = (4x) ^ 2 + 56 ^ 2 + 2  \times 4x  \times 56  \\\bf 48x ^ 2 + 672x = 16x ^ 2 + 3136 + 448x \\\bf 48x ^ 2 - 16x ^ 2 + 672x - 448x - 3136 = 0  \\\bf 32x ^ 2 + 224x - 3136 = 0 \\ \bf32(x ^ 2 + 7x - 98) = 0 \\ \bf x ^ 2 + 7x - 98 = 0 \\\bf x ^ 2 + 14x - 7x - 98 = 0

 \bf \: x(x + 14) - 7(x + 14) = 0 \\ \bf (x - 7)(x + 14) = 0 \\  \bf \: So, x = 78x = - 14

So,

x = 7 x = -14

Since x cannot be negative,

So,x=7

Now,

 \bf \: AB=x+8=7+8=15 cm \\\bf AC=x+6=7+6=13 cm \\

\large\bf{\red{\mathfrak{Hope\:It\:Helps}}}

Similar questions